ÒÑÖª¶þ´Îº¯ÊýµÄͼÏóÈçͼËùʾ£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¼°Å×ÎïÏ߶¥µãMµÄ×ø±ê£»
£¨2£©ÈôµãNΪÏ߶ÎBMÉϵÄÒ»µã£¬¹ýµãN×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪµãQ£®µ±µãNÔÚÏ߶ÎBMÉÏÔ˶¯Ê±£¨µãN²»ÓëµãB£¬µãMÖغϣ©£¬ÉèNQµÄ³¤Îªt£¬ËıßÐÎNQACµÄÃæ»ýΪs£¬ÇósÓëtÖ®¼äµÄº¯Êý¹Øϵʽ¼°×Ô±äÁ¿tµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ¶Ô³ÆÖáÓÒ²àµÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷PACΪֱ½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öËùÓзûºÏÌõ¼þµÄµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©½«¡÷OAC²¹³É¾ØÐΣ¬Ê¹ÉÏ¡÷OACµÄÁ½¸ö¶¥µã³ÉΪ¾ØÐÎÒ»±ßµÄÁ½¸ö¶¥µã£¬µÚÈý¸ö¶¥µãÂäÔÚ¾ØÐÎÕâÒ»±ßµÄ¶Ô±ßÉÏ£¬ÊÔÖ±½Óд³ö¾ØÐεÄδ֪µÄ¶¥µã×ø±ê£¨²»ÐèÒª¼ÆËã¹ý³Ì£©£®
£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽy=a£¨x+1£©£¨x-2£©£¬
¡ß-2=a¡Á1¡Á£¨-2£©£¬
¡àa=1£¬
¡ày=x2-x-2£¬Æ䶥µã×ø±êÊÇ£¨
1
2
£¬-
9
4
£©£»

£¨2£©ÉèÏ߶ÎBMËùÔÚµÄÖ±ÏߵĽâÎöʽΪ£ºy=kx+b£¨k¡Ù0£©£¬
µãNµÄ×ø±êΪN£¨h£¬-t£©£¬
Ôò
0=2k+b
-
9
4
=
1
2
k+b
£¬
½âËüÃÇ×é³ÉµÄ·½³Ì×éµÃ£º
k=
3
2
b=-3
£¬
ËùÒÔÏ߶ÎBMËùÔÚµÄÖ±ÏߵĽâÎöʽΪ£ºy=
3
2
x-3£¬
Nµã×Ý×ø±êΪ£º-t£¬
¡à-t=
3
2
h-3£¬
¡àh=2-
2
3
t£¬
ÆäÖÐ
1
2
£¼h£¼2£¬
¡às=
1
2
¡Á1¡Á2+
1
2
£¨2+t£©£¨2-
2
3
t£©=-
1
3
t2+
1
3
t+3£¬
¡àsÓët¼äµÄº¯Êý½âÎöʽΪ£¬
s=-
1
3
t2+
1
3
t+3£¬
¡ßMµã×ø±êÊÇ£¨
1
2
£¬-
9
4
£©£»
¡àQN×î´óֵΪ£º
9
4
£¬
¡à×Ô±äÁ¿µÄȡֵΧÊÇ£º0£¼t£¼
9
4
£»

£¨3£©´æÔÚ·ûºÏÌõ¼þµÄµãP£¬ÇÒ×ø±êÊÇ£ºP1£¨
5
2
£¬
7
4
£©£¬P2£¨
3
2
£¬-
5
4
£©£®
ÉèµãPµÄ×ø±êΪP£¨m£¬n£©£¬Ôò n=m2-m-2£¬PA2=£¨m+1£©2+n2
PC2=m2+£¨n+2£©2£¬AC2=5£¬
·ÖÒÔϼ¸ÖÖÇé¿öÌÖÂÛ£º
£¨¢¡£©Èô¡ÏACP=90¡ãÔòAP2=PC2+AC2£®
¿ÉµÃ£ºm2+£¨n+2£©2+£¨m+1£©2+n2=5£¬
½âµÃ£ºm1=
5
2
£¬m2=-1£¨ÉáÈ¥£©£®
ËùÒÔµãP£¨
5
2
£¬
7
4
£©
£¨¢¢£©Èô¡ÏPAC=90¡ã£¬ÔòPC2=PA2+AC2
¡àn=m2-m-2
£¨m+1£©2+n2=m2+£¨n+2£©2+5
½âµÃ£ºm3=
3
2
£¬m4=0£¨ÉáÈ¥£©£®ËùÒÔµãP£¨
3
2
£¬-
5
4
£©£®
£¨¢££©ÓÉͼÏó¹Û²ìµÃ£¬µ±µãPÔÚ¶Ô³ÆÖáÓÒ²àʱ£¬PA£¾AC£¬ËùÒÔ±ßACµÄ¶Ô½Ç¡ÏAPC²»¿ÉÄÜÊÇÖ±½Ç£®

£¨4£©ÒÔµãO£¬µãA£¨»òµãO£¬µãC£©Îª¾ØÐεÄÁ½¸ö¶¥µã£¬µÚÈý¸ö¶¥µãÂäÔÚ¾ØÐÎÕâÒ»±ßOA£¨»ò±ßOC£©µÄ¶Ô±ßÉÏ£¬
Èçͼ£¬´Ëʱδ֪¶¥µã×ø±êÊǵãP£¨-1£¬-2£©£¬ÒÔµãA£¬µãCΪ¾ØÐεÄÁ½¶¥µã£¬
µÚÈý¸ö¶¥µãÂäÔÚ¾ØÐÎÕâÒ»±ßACµÄ¶Ô±ßÉÏ£¬
Èçͼ£¬´Ëʱδ֪¶¥µã×ø±êÊÇP1£¨-1£¬-2£©£¬P2£¨-
1
5
£¬
2
5
£©»ò
£¨
4
5
£¬-
8
5
£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¨1£©£¬Å×ÎïÏßy=ax2-3ax+b¾­¹ýA£¨-1£¬0£©£¬C£¨3£¬-4£©Á½µã£¬ÓëyÖá½»ÓÚµãD£¬ÓëxÖá½»ÓÚÁíÒ»µãB£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôÖ±ÏßL£ºy=kx+1£¨k¡Ù0£©½«ËıßÐÎABCDµÄÃæ»ý·Ö³ÉÏàµÈµÄÁ½²¿·Ö£¬ÇóÖ±ÏßLµÄ½âÎöʽ£»
£¨3£©Èçͼ£¨2£©£¬¹ýµãE£¨1£¬1£©×÷EF¡ÍxÖáÓÚµãF£¬½«¡÷AEFÈÆƽÃæÄÚijµãÐýת180¡ãºóµÃ¡÷MNT£¨µãM¡¢N¡¢T·Ö±ðÓëµãA£¬E£¬F¶ÔÓ¦£©£¬Ê¹µãM£¬NÔÚÅ×ÎïÏßÉÏ£¬ÇóµãM£¬NµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬Å×ÎïÏßy=ax2+bx+3ÓëxÖáÏཻÓÚµãA£¨-1£¬0£©¡¢B£¨3£¬0£©£¬ÓëyÖáÏཻÓÚµãC£¬µãPΪÏ߶ÎOBÉϵĶ¯µã£¨²»ÓëO¡¢BÖغϣ©£¬¹ýµãP´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÅ×ÎïÏß¼°Ï߶ÎBC·Ö±ð½»ÓÚµãE¡¢F£¬µãDÔÚyÖáÕý°ëÖáÉÏ£¬OD=2£¬Á¬½ÓDE¡¢OF£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±ËıßÐÎODEFÊÇƽÐÐËıßÐÎʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©¹ýµãAµÄÖ±Ïß½«£¨2£©ÖеÄƽÐÐËıßÐÎODEF·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬ÇóÕâÌõÖ±ÏߵĽâÎöʽ£®£¨²»±Ø˵Ã÷ƽ·ÖƽÐÐËıßÐÎÃæ»ýµÄÀíÓÉ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÅ×ÎïÏßC1£ºy=ax2+4ax+4a-5µÄ¶¥µãΪP£¬ÓëxÖáÏཻÓÚA¡¢BÁ½µã£¨µãAÔÚµãBµÄ×ó±ß£©£¬µãBµÄºá×ø±êÊÇ1£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽºÍ¶¥µãPµÄ×ø±ê£»
£¨2£©½«Å×ÎïÏßÑØxÖá·­ÕÛ£¬ÔÙÏòÓÒƽÒÆ£¬Æ½ÒƺóµÄÅ×ÎïÏßC2µÄ¶¥µãΪM£¬µ±µãP¡¢M¹ØÓÚµãB³ÉÖÐÐĶԳÆʱ£¬ÇóƽÒƺóµÄÅ×ÎïÏßC2µÄ½âÎöʽ£»
£¨3£©Ö±Ïßy=-
3
5
x+m
ÓëÅ×ÎïÏßC1¡¢C2µÄ¶Ô³ÆÖá·Ö±ð½»ÓÚµãE¡¢F£¬ÉèÓɵãE¡¢P¡¢F¡¢M¹¹³ÉµÄËıßÐεÄÃæ»ýΪs£¬ÊÔÓú¬mµÄ´úÊýʽ±íʾs£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÒÑÖª£ºÈçͼËùʾ£¬Ò»´Îº¯ÊýÓÐy=-2x+3µÄͼÏóÓëxÖá¡¢yÖá·Ö±ð½»ÓÚA¡¢CÁ½µã£¬¶þ´Îº¯Êýy=x2+bx+cµÄͼÏó¹ýµãC£¬ÇÒÓëÒ»´Îº¯ÊýÔÚµÚ¶þÏóÏÞ½»ÓÚÁíÒ»µãB£¬ÈôAC£ºCB=1£º2£¬ÄÇôÕâ¶þ´Îº¯ÊýµÄ¶¥µã×ø±êΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÔÚRt¡÷ABCÖУ¬¡ÏA=90¡ã£¬tanB=
3
4
£¬µãPÔÚÏ߶ÎABÉÏÔ˶¯£¬µãQ¡¢R·Ö±ðÔÚÏ߶ÎBC£¬ACÉÏ£¬ÇÒʹµÃËıßÐÎAPQRÊǾØÐΣ®ÉèAPµÄ³¤ÊÇx£¬¾ØÐÎAPQRÃæ»ýΪy£¬ÒÑÖªyÊÇxµÄº¯Êý£¬ÆäͼÏóÊǹýµã£¨12£¬36£©µÄÅ×ÎïÏßÉϵÄÒ»²¿·Ö£®
£¨1£©ÇóABµÄ³¤£»
£¨2£©µ±APΪºÎֵʱ£¬¾ØÐÎAPQRµÄÃæ»ý×î´ó£¬²¢Çó³ö×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÅ×ÎïÏßy=-x2-3x+4ºÍÅ×ÎïÏßy=x2-3x-4ÏཻÓÚA£¬BÁ½µã£®µãPÔÚÅ×ÎïÏßC1ÉÏ£¬ÇÒλÓÚµãAºÍµãBÖ®¼ä£»µãQÔÚÅ×ÎïÏßC2ÉÏ£¬Ò²Î»ÓÚµãAºÍµãBÖ®¼ä£®
£¨1£©ÇóÏ߶ÎABµÄ³¤£»
£¨2£©µ±PQ¡ÎyÖáʱ£¬ÇóPQ³¤¶ÈµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬Óó¤20mµÄÀé°Ê£¬Ò»Ã濿ǽΧ³ÉÒ»¸ö³¤·½ÐεÄÔ°×Ó£¬ÔõôΧ²ÅÄÜʹ԰×ÓµÄÃæ»ý×î´ó£¿×î´óÃæ»ýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÎÊÌâ±³¾°£º
Èô¾ØÐεÄÖܳ¤Îª1£¬Ôò¿ÉÇó³ö¸Ã¾ØÐÎÃæ»ýµÄ×î´óÖµ£®ÎÒÃÇ¿ÉÒÔÉè¾ØÐεÄÒ»±ß³¤Îªx£¬Ãæ»ýΪs£¬ÔòsÓëxµÄº¯Êý¹ØϵʽΪ£ºs=-x2+
1
2
x
£¨x£¾0£©£¬ÀûÓú¯ÊýµÄͼÏó»òͨ¹ýÅä·½¾ù¿ÉÇóµÃ¸Ãº¯ÊýµÄ×î´óÖµ£®
Ìá³öÐÂÎÊÌ⣺
Èô¾ØÐεÄÃæ»ýΪ1£¬Ôò¸Ã¾ØÐεÄÖܳ¤ÓÐÎÞ×î´óÖµ»ò×îСֵ£¿ÈôÓУ¬×î´ó£¨Ð¡£©ÖµÊǶàÉÙ£¿
·ÖÎöÎÊÌ⣺
ÈôÉè¸Ã¾ØÐεÄÒ»±ß³¤Îªx£¬Öܳ¤Îªy£¬ÔòyÓëxµÄº¯Êý¹ØϵʽΪ£ºy=2(x+
1
x
)
£¨x£¾0£©£¬ÎÊÌâ¾Íת»¯ÎªÑо¿¸Ãº¯ÊýµÄ×î´ó£¨Ð¡£©ÖµÁË£®
½â¾öÎÊÌ⣺
½è¼øÎÒÃÇÒÑÓеÄÑо¿º¯ÊýµÄ¾­Ñ飬̽Ë÷º¯Êýy=2(x+
1
x
)
£¨x£¾0£©µÄ×î´ó£¨Ð¡£©Öµ£®
£¨1£©Êµ¼ù²Ù×÷£ºÌîдÏÂ±í£¬²¢ÓÃÃèµã·¨»­³öº¯Êýy=2(x+
1
x
)
£¨x£¾0£©µÄͼÏó£º
x¡­1/41/31/21234¡­
y¡­
17
2
20
3
545
20
3
17
2
¡­
£¨2£©¹Û²ì²ÂÏ룺¹Û²ì¸Ãº¯ÊýµÄͼÏ󣬲ÂÏëµ±x=______ʱ£¬º¯Êýy=2(x+
1
x
)
£¨x£¾0£©ÓÐ×î______Öµ£¨Ìî¡°´ó¡±»ò¡°Ð¡¡±£©£¬ÊÇ______£®
£¨3£©ÍÆÀíÂÛÖ¤£ºÎÊÌâ±³¾°ÖÐÌáµ½£¬Í¨¹ýÅä·½¿ÉÇó¶þ´Îº¯Êýs=-x2+
1
2
x
£¨x£¾0£©µÄ×î´óÖµ£¬ÇëÄã³¢ÊÔͨ¹ýÅä·½Çóº¯Êýy=2(x+
1
x
)
£¨x£¾0£©µÄ×î´ó£¨Ð¡£©Öµ£¬ÒÔÖ¤Ã÷ÄãµÄ²ÂÏ룮¡²Ìáʾ£ºµ±x£¾0ʱ£¬x=(
x
)2
¡³

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸