【题目】如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“巧数”,如:,,,因此4,12,20这三个数都是“巧数”.
(1)400和2020这两个数是“巧数”吗?为什么?
(2)设两个连续偶数为和(其中取正整数),由这两个连续偶数构造的“巧数”是4的倍数吗?为什么?
(3)求介于50到101之间所有“巧数”之和.
【答案】(1)400不是“巧数”,2020是“巧数”,理由见解析;(2)是,理由见解析;(3)532.
【解析】
(1)根据“巧数”的定义进行判断即可;
(2)列出这两数的平方差,运用平方差公式进行计算,对结果进行分析即可;
(3)介于50到100之间的所有“巧数”中,最小的为:142-122=52,最大的为:262-242=100,将它们全部列出不难求出他们的和.
解:(1)400不是“巧数”,2020是“巧数”.原因如下:
因为,故400不是“巧数”,
因为2020=5062-5042,故2020是“巧数”;
(2)
∵n为正整数,
∴2n-1一定为正整数,
∴4(2n-1)一定能被4整除,
即由这两个连续偶数构造的“巧数”是4的倍数;
(3)介于50到100之间的所有“巧数”之和,
S=(142-122)+(162-142)+(182-162)+…+(262-242)=262-122=532.
故答案是:532.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b'),给出如下定义:
若b'=,则称点Q为点P的限变点.例如:点(3,﹣2)的限变点的坐标是(3,﹣2),点(﹣1,5)的限变点的坐标是(﹣1,﹣5).
(1)①点(﹣,1)的限变点的坐标是 ;
②在点A(﹣1,2),B(﹣2,﹣1)中有一个点是函数y=图象上某一个点的限交点,这个点是 ;
(2)若点P在函数y=﹣x+3的图象上,当﹣2≤x≤6时,求其限变点Q的纵坐标b'的取值范围;
(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b'的取值范围是b'≥m或b'<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家在“吾悦广场”购买了一间商铺,准备承包给甲、乙两家装修公司进行店面装修,经调查:甲公司单独完成该工程的时间是乙公司的2倍,已知甲、乙两家公司共同完成该工程建设需20天;若甲公司每天所需工作费用为650元,乙公司每天所需工作费用为1200元,若从节约资金的角度考虑,则应选择哪家公司更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.
(1)求OA、OB的长;
(2)连接PB,设△POB的面积为S,用t的式子表示S;
(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
(1)A,B两城相距 千米,乙车比甲车早到 小时;
(2)甲车出发多长时间与乙车相遇?
(3)若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰中,,,点,点分别是轴,轴上两个动点,直角边交轴于点,斜边交轴于点.
(1)如图①,当等腰运动到使点恰为中点时,连接,求证:;
(2)如图②,当等腰运动到使时,点的横坐标为,.在轴上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,已知点、点,动点从点开始在线段上以每秒个单位长度的速度向点移动,同时动点从点开始在线段上以每秒个单位长度的速度向点移动,设点、移动的时间为秒.
求点的坐标;
当为何值时,的面积为个平方单位?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两个箱子,其中甲箱内有颗球,分别标记号码,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出颗球放入乙箱后,乙箱内球的号码的中位数为.若此时甲箱内有颗球的号码小于,有颗球的号码大于,若他们的中位数都为,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点在的边上,交于,交于,若添加条件________,则四边形是矩形;若添加条件________,则四边形是菱形;若添加条件________,则四边形是正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com