精英家教网 > 初中数学 > 题目详情
(北师大版)如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为
2
-1,直线a:y=-x-
2
与坐标轴分别交于A,C两点,点B的坐标为(4,1),⊙B与X轴相切于点M.
(1)求点A的坐标及∠CAO的度数;
(2)⊙B以每秒1个单位长度的速度沿x轴负方向平移,同时,直线a绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线a也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度;
(3)如图2,过A,O,C三点作⊙O1,点E是劣弧
AO
上一点,连接EC,EA.EO,当点E在劣弧
AO
上运动时(不与A,O两点重合),
EC-EA
EO
的值是否发生变化?如果不变,求其值;如果变化,说明理由
(1)令直线a:y=-x-
2
中,y=0求出x=-
2

∴A(-
2
,0),
令x=0求出y=-
2
,∴C(0,-
2
),
∴OA=OC,
∵OA⊥OC,
∴△AOC为等腰直角三角形,
∴∠CAO=45°;

(2)如图,设⊙B平移t秒到⊙B1处与⊙O第一次相切,此时,直线α旋转到α1恰好与⊙B1第一次相切于点P,⊙B1与x轴相切于点N,
连接B1O,B1N,则MN=t,OB1=
2

B1N⊥AN,∴MN=3,即t=3.
连接B1A,B1P.则B1P⊥AP,B1P=B1N.∴∠PAB1=∠NAB1
∵OA=OB1=
2
,∴∠AB1O=∠NAB1∴∠PAB1=∠AB1O.∴PAB1O.
在Rt△NOB1中,∠B1ON=45°,
∴∠PAN=45°,∴∠PAC=90°,即顺时针转动270°,
∴直线AC绕点A平均每秒90°.

(3)
EC-EA
EO
的值不变,等于
2
,如图
在CE上截取CK=EA,连接OK,
∵∠OAE=∠OCK,OA=OC,
∴△OAE≌△OCK,
∴OE=OK,∠EOA=∠KOC,
∴∠EOK=∠AOC=90°,
∴EK=
2
EO,∴
EC-EA
EO
=
2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

一次函数y=kx+b满足x=地时,y=-h;x=h时,y=h,则这个一次函数是(  )
A.y=2x+1B.y=-2x+1C.y=2x-1D.y=-2x-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某家庭装修房屋,由甲,乙两个装修公司合作完成.先由甲装修公司单独装修3天,剩下的工作由甲,乙两个装修公路合作完成.工程进度满足如图所示的函数关系,该家庭共支付工资8000元.
(1)完成此房屋装修共需多少天?
(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙C通过原点并与坐标轴分别交于A、D两点,B是⊙C上一点,若∠OBD=60°,D点坐标为(3,0),则直线AD的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标中,四边形OABC是等腰梯形,CBOA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知直线经过A(-3,7)、B(2,-3)两点.
(1)求经过A、B两点的一次函数关系式;
(2)画出该一次函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平面直角坐标系中,直线y=
3
3
x
与直线x=3交于点P,点A是直线x=3与x轴的交点,将直线OP绕着点O、直线AP绕着点A以相同的速度逆时针方向旋转,旋转过程中,两条直线交点始终为P,当直线OP与y轴正半轴重合时,两条直线同时停止转动.
(1)当旋转角度为15°时,点P坐标为______;
(2)整个旋转过程中,点P所经过的路线长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两车从A地出发,沿同一条高速公路行驶至距A地400千米的B地.l1,l2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(如图所示).根据图象提供的信息,解答下列问题:
(1)求l2的函数表达式(不要求写出x的取值范围);
(2)甲、乙两车哪一辆先到达B地该车比另一辆车早多长时间到达B地?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知有一长方形的周长为12,其中一边长为x,另一边长为y.
(1)求y与x的关系式,并求出x的范围;
(2)画出它的图象.

查看答案和解析>>

同步练习册答案