精英家教网 > 初中数学 > 题目详情
在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.精英家教网
(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为
12
5
,sin∠ABC=
3
5
,求直线AC的解析式;
(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.
分析:(1)过O作OG⊥AB于G,则OG=
12
5
.根据三角函数分别求出A、C的坐标.利用待定系数法可求得直线AC的解析式为y=
3
4
x-
9
4

(2)设△AOB的内切圆分别切OA、OB、AB于点P、Q、T,则可求得BQ=BT=OB-
d
2
,AP=AT=OA-
d
2
,AB=BT+AT=OB-
d
2
+OA-
d
2
=OA+OB-d,则d+AB=d+OA+OB-d=OA+OB.
在x轴上取一点N,使AN=OB,连接OM、BM、AM、MN,求得△BOM≌△ANM,所以有OA+OB=OA+AN=ON=
OM2+MN2
=
2
×OM=
2
×2
2
=4,即d+AB的值不会发生变化,其值为4.
解答:精英家教网解:(1)如图1,过O作OG⊥AB于G,则OG=
12
5

设OA=3k(k>0),
∵∠AOB=90°,sin∠ABC=
3
5

∴AB=5k,OB=4k.
∵OA•OB=AB•OG=2S△AOB′
∴3k×4k=5×
12
5
,∴k=1.
∴OA=3,OB=4,AB=5,
∴A(3,0).
∵∠AOB=90°,
∴AB是⊙O1的直径.
∵AC切⊙O1于A,
∴BA⊥AC,∴∠BAC=90°.
在Rt△ABC中
∵cos∠ABC=
AB
BC
=
4
5

∴BC=
25
4

∴OC=BC-OB=
9
4

∴C(0,-
9
4
).
设直线AC的解析式为y=kx+b,则
3k+b=0
b=-
9
4

k=
3
4
,b=-
9
4

∴直线AC的解析式为y=
3
4
x-
9
4


(2)结论:d+AB的值不会发生变化,
设△AOB的内切圆分别切OA、OB、AB于点P、Q、T,如图2所示.
∴BQ=BT,AP=AT,OQ=OP=
d
2

∴BQ=BT=OB-
d
2
,AP=AT=OA-
d
2
精英家教网
∴AB=BT+AT=OB-
d
2
+OA-
d
2
=OA+OB-d.
则d+AB=d+OA+OB-d=OA+OB.
在x轴上取一点N,使AN=OB,连接OM、BM、AM、MN.
∵M(2,2),
∴OM平分∠AOB,
∴OM=2
2

∴∠BOM=∠MON=45°,
∴AM=BM,
又∵∠MAN=∠OBM,OB=AN,
∴△BOM≌△ANM,
∴∠BOM=∠ANM=45°,∠ANM=∠MON,
∴OM=NM∠OMN=90°,
∴OA+OB=OA+AN=ON=
OM2+MN2
=
2
×OM=
2
×2
2
=4.
∴d+AB的值不会发生变化,其值为4.
点评:主要考查了一次函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象的性质和交点的意义求出相应的线段的长度或表示线段的长度,再结合具体图形的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中有三点A(0,1),B(1,3),C(2,6);已知直线y=ax+b上横坐标为0、1、2的点分别为D、E、F.试求a,b的值使得AD2+BE2+CF2达到最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,某三角形三个顶点的横坐标不变,纵坐标都增加2个单位,则所得三角形与原三角形相比(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,将坐标为(5,6),(1,2),(3,2),(3,0),(7,0),(7,2),(9,2),(5,6)的点用线段依此连接起来形成一个图案.
(1)纵坐标保持不变,横坐标分别减去3呢,与原图形相比,所得图形有什么变化?
(2)横坐标保持不变,纵坐标分别乘以-1,与原图形相比,所得图形有什么变化?
(3)横坐标加上2,纵坐标减去3呢,与原图形相比,所得图形有什么变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标;
(2)求出S△ABC
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化后的图形,并判断线段AB和线段A′B′的关系.

查看答案和解析>>

同步练习册答案