精英家教网 > 初中数学 > 题目详情
13.方程x2-2(m-1)x+m2-4=0的两根异号,则m的取值范围是-2<m<2.

分析 根据x1•x2=$\frac{c}{a}$<0,列出不等式即可解决问题.

解答 解:∵x2-2(m-1)x+m2-4=0的两根异号,
∴m2-4<0,
∴-2<m<2,
故答案为-2<m<2.

点评 本题考查根与系数关系、解题的关键是记住x1+x2=-$\frac{b}{a}$,x1•x2=$\frac{c}{b}$,记住方程有解的条件,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.已知x=$\sqrt{5}$+2,代数x2-4x+11的值为12.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知(x2+y2)(x2+y2-1)=12,则x2+y2的值是4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.(x+y)2=25,xy=12,则x2+y2=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.能被3整除的整数具有一些特殊的性质:
(1)定义一种能够被3整除的三位数$\overline{abc}$的“F”运算:把$\overline{abc}$的每一个数位上的数字都立方,再相加,得到一个新数.例如$\overline{abc}$=213时,则:213$\stackrel{F}{→}$36(23+13+33=36)$\stackrel{F}{→}$243(33+63=243).数字111经过三次“F”运算得351,经过四次“F”运算得153,经过五次“F”运算得153,经过2016次“F”运算得153.
(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先阅读材料,然后回答问题.
(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简$\sqrt{5-2\sqrt{6}}$
经过思考,小张解决这个问题的过程如下:
$\sqrt{5-2\sqrt{6}}$=$\sqrt{2-2\sqrt{2×3}+3}$①
=$\sqrt{{{({\sqrt{2}})}^2}-2\sqrt{2}×\sqrt{3}+{{({\sqrt{3}})}^2}}$②
=$\sqrt{{{({\sqrt{2}-\sqrt{3}})}^2}}$③
=$\sqrt{2}-\sqrt{3}$④
在上述化简过程中,第④步出现了错误,化简的正确结果为$\sqrt{3}$-$\sqrt{2}$;
(2)请根据你从上述材料中得到的启发,化简$\sqrt{8+4\sqrt{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.有一列数按如下规律排列:-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{3}}{4}$,$\frac{1}{4}$,-$\frac{\sqrt{5}}{16}$,-$\frac{\sqrt{6}}{32}$,$\frac{\sqrt{7}}{64}$,…则第2016个数是(  )
A.$\frac{\sqrt{2016}}{{2}^{2015}}$B.-$\frac{\sqrt{2016}}{{2}^{2015}}$C.$\frac{\sqrt{2017}}{{2}^{2016}}$D.-$\frac{\sqrt{2017}}{{2}^{2016}}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.将实数1,$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,按如图所示方式排列,若用(m,n),表示第m排从左向右第n个数,则(5,4)与(11,7)表示两数之积是$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若(2x-1)3=0.027,则x=0.65;
若x3=-125,则(x-1)2=36.

查看答案和解析>>

同步练习册答案