【题目】如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为( )
A.( ,2)B.( ,1)C.( ,2)D.(,1)
【答案】A
【解析】
延长DC交y轴于F,过C作CG⊥OA于G,CE⊥AB于E,根据角平分线的性质得到FC=CG=CE,求得DH=CG=CF,设DH=3x,AH=4x,根据勾股定理得到AD=5x,根据平行线的性质得到∠DCA=∠CAG,求得∠DCA=∠DAC,得到CD=HG=AD=5x,列方程即可得到结论.
解:延长DC交y轴于F,过C作CG⊥OA于G,CE⊥AB于E,
∵CD∥x轴,
∴DF⊥OB,
∵∠BAO,∠ABO的平分线相交于点C,
∴FC=CG=CE,
∴DH=CG=CF,
∵A(8,0),B(0,6),
∴OA=8,OB=6,
∴tan∠OAB===,
∴设DH=3x,AH=4x,
∴AD=5x,
∵CD∥OA,
∴∠DCA=∠CAG,
∵∠DAC=∠GAC,
∴∠DCA=∠DAC,
∴CD=HG=AD=5x,
∴3x+5x+4x=8,
∴x=,
∴DH=2,OH=,
∴D(,2),
故选:A.
科目:初中数学 来源: 题型:
【题目】中华人民共和国《城市道路路内停车泊位设置规范》规定:
一、在城市道路范围内,在不影响行人、车辆通行的情况下,政府有关部门可以规划停车泊位.停车泊位的排列方式有三种,如图所示:
二、双向通行道路,路幅宽米以上的,可在两侧设停车泊位,路幅宽米到米的,可在单侧设停车泊位,路幅宽米以下的,不能设停车泊位;
三、规定小型停车泊位,车位长米,车位宽米;
四、设置城市道路路内机动车停车泊位后,用于单向通行的道路宽度应不小于米.
根据上述的规定,在不考虑车位间隔线和车道间隔线的宽度的情况下,如果在一条路幅宽为米的双向通行车道设置同一种排列方式的小型停车泊位,请回答下列问题:
(1)可在该道路两侧设置停车泊位的排列方式为 ;
(2)如果这段道路长米,那么在道路两侧最多可以设置停车泊位 个.
(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E、F分别在AB、CD边上,AD=6,AB=8,将△CBE沿CE翻折,使B点的对应点B′刚好落在对角线AC上,将△ADF沿AF翻折,使D点的对应点D′也恰好落在对角线AC上,连接EF,则EF的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的解析式为,则下列说法中错误的是( )
A.确定抛物线的开口方向与大小
B.若将抛物线沿轴平移,则,的值不变
C.若将抛物线沿轴平移,则的值不变
D.若将抛物线沿直线:平移,则、、的值全变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,,,,是射线上一点,连接,沿将折叠,得.
(1)如图所示,当时,_______度;
(2)如图所示,当时,求线段的长度;
(3)当点为中点时,点是边上不与点、重合的一个动点,将沿折叠,得到,连接,求周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】十九大召开后,某社区开展了“市民对十九大的关注情况”调查,采用随机抽样的方法访问了部分年龄在18周岁以上的城乡居民.小聪根据调查数据绘制了如下不完整的频数分布置表和扇形统计图.请根据图表解答下列问题.
关注情况 | 频数 |
非常关注() | 128 |
比较关注() | |
一般关注() | 80 |
不太关注() | |
不关注() | 2 |
(1)请完成频数分布表空格数据填写;
(2)求“非常关注”部分扇形圆心角的度数;
(3)若该社区18周岁以上居民共有20000人,请估计“比较关注”和“非常关注”的居民共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在的正方形网格中,每个小正方形的边长均为1,的三个顶点均在小正方形的顶点上.
(1)在图1中画一个(点在小正方形的顶点上),使的周长等于的周长,且以、、、为顶点的四边形是轴对称图形;
(2)在图2中画(点在小正方形的顶点上),使的周长等于的周长,且以、、、为顶点的四边形是中心对称图形;
(3)直接写出图2中四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com