【题目】如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.
(1)求证:BE是⊙O的切线;
(2)当BE=3时,求图中阴影部分的面积.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)连接BO,根据△OBC和△BCE都是等腰三角形,即可得到∠BEC=∠OBC=∠OCB=30°,再根据三角形内角和即可得到∠EBO=90°,进而得出BE是⊙O的切线;
(2)在Rt△ABC中,根据∠ACB=30°,BC=3,即可得到半圆的面积以及Rt△ABC的面积,进而得到阴影部分的面积.
试题解析:(1)如图所示,连接BO,
∵∠ACB=30°,
∴∠OBC=∠OCB=30°,
∵DE⊥AC,CB=BD,
∴Rt△DCE中,BE=CD=BC,
∴∠BEC=∠BCE=30°,
∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,
∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,
∴BE是⊙O的切线;
(2)当BE=3时,BC=3,
∵AC为⊙O的直径,
∴∠ABC=90°,
又∵∠ACB=30°,
∴AB=tan30°×BC=,
∴AC=2AB=2,AO=
,
∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣
AB×BC=
π×3﹣
×
×3=
.
科目:初中数学 来源: 题型:
【题目】已知:如图,梯形ABCD与梯形A′B′C′D′相似,AD∥BC,A′D′∥B′C′,∠A=∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:
(1)梯形ABCD与梯形A′B′C′D′的相似比k;
(2)A′B′和BC的长;
(3)D′C′∶DC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的10×10网络中(我们把组成网格的小正方形的顶点称为格点),△ABC的三个顶点分别在网格的格点上
(1)请你在所给的网格中建立平面直角坐标系,使△ABC的顶点A的坐标为(-3,5);
(2)在(1)的坐标系中,直接写出△ABC其它两个顶点的坐标;
(3)在(1)的坐标系中,画出△ABC关于y轴对称的图形△A1B1C1 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面真角坐标系中,点A.B的坐标分别为A(a,0),B(b,0),且a,b满足|a+1|+=0,点C的坐标为(0,3).
(1)求a,b的值及S△ABC;
(2)若点M在x轴上,且S△ACM=S△ABC,试求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步,然后改为步行,到达图书馆恰好用45min:小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示.
(1)家与图书馆之间的路程为 m,小东从图书馆到家所用的时间为 .
(2)求小玲步行时y与x之间的函数关系式.
(3)求两人相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在Rt△ABC的边上,当矩形DEFG的面积最大时,其对角线的长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, OABC的顶点O,A,C的坐标分别是(0,0),(2,0),(
,1),则点B的坐标是( )
A.(1,2)B.(,2)C.(
,1)D.(3,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,
,
,
于点D,点E是直线AC上一动点,连接DE,过点D作
,交直线BC于点F.
探究发现:
如图1,若,点E在线段AC上,则
______;
数学思考:
如图2,若点E在线段AC上,则
______
用含m,n的代数式表示
;
当点E在直线AC上运动时,
中的结论是否任然成立?请仅就图3的情形给出证明;
拓展应用:若
,
,
,请直接写出CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),,
,
垂足为A,B,
,点
在线段
上以每秒2
的速度由点
向点
运动,同时点
在线段
上由点
向点
运动.它们运动的时间为
(
).
(1)
,
;(用
的代数式表示)
(2)如点的运动速度与点
的运动速度相等,当
时,
与
是否全等,并判断此时线段
和线段
的位置关系,请分别说明理由;
(3)如图(2),将图(1)中的“,
”,改为“
”,其他条件不变.设点
的运动速度为
,是否存在有理数
,
与
是否全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com