精英家教网 > 初中数学 > 题目详情
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.
(1)求证:△BCE≌△ACD;
(2)求证:FH∥BD.
分析:(1)先根据△ABC和△CDE都是等边三角形得出BC=AC,CE=CD,∠BCA=∠ECD=60°,再由SAS定理即可得出△BCE≌△ACD;
(2)由(1)知△BCE≌△ACD,可知∠CBF=∠CAH,BC=AC,再由ASA定理可知△BCF≌△ACH,可得出CF=CH,根据∠FCH=60°,可知△CHF为等边三角形,进而可得出结论.
解答:证明:(1)∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,
∴在△BCE和△ACD中,
BC=AC
∠BCE=∠ACD
CE=CD

∴△BCE≌△ACD (SAS).

(2)由(1)知△BCE≌△ACD,
则∠CBF=∠CAH,BC=AC
又∵△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,
∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF,
在△BCF和△ACH中,
∠CBE=∠CAH
BC=AC
∠BCF=∠ACH

∴△BCF≌△ACH (ASA),
∴CF=CH,
又∵∠FCH=60°,
∴△CHF为等边三角形
∴∠FHC=∠HCD=60°,
∴FH∥BD.
点评:本题考查的是等边三角形的判定与性质及全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知点D是∠ABC的平分线上一点,点P在BD上,PA⊥AB,PC⊥BC,垂足分别为A,C、下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点C为反比例函数y=-
6x
上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为(  )
A、
3
2
B、
3
-
3
C、2
3
D、4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D为△ABC中AC边上一点,且AD:DC=3;4,设
BA
=
a
BC
b

(1)在图中画出向量
BD
分别在
a
b
方向上的分向量;
(2)试用
a
b
的线性组合表示向量
BD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C为AB上一点,AC=12cm,CB=
23
AC,D、E分别为AC、AB的中点.
(1)图中共有
10
10
线段.
(2)求DE的长.

查看答案和解析>>

同步练习册答案