【题目】如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作GDEC.
(1)判断DE与⊙O的位置关系,并说明理由.
(2)若点B是的中点,⊙O的半径为2,求的长.
【答案】(1)DE是⊙O的切线,理由见解析;(2)π
【解析】
(1) 连接OD,由题意可得∠ABC=45°,再结合圆周角定理可得∠COD=2∠ABC=90°,再由平行四边形GDEC可得,∠EDO+∠COD=180°,即∠EDO=90°,即可完成证明;
(2) 连接OB,可得点B是的中点,进一步说明∠BOC=∠BOD,在确定∠BOC的度数,最后用弧长公式求解即可·
解:(1)DE是⊙O的切线;理由如下:
连接OD,
∵∠ACB=90°,CA=CB,
∴∠ABC=45°,
∴∠COD=2∠ABC=90°,
∵四边形GDEC是平行四边形,
∴DE∥CG,
∴∠EDO+∠COD=180°,
∴∠EDO=90°,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)连接OB,
∵点B是的中点,
∴,
∴∠BOC=∠BOD,
∵∠BOC+∠BOD+∠COD=360°,
∴∠BOC==135°
∴的长==π.
科目:初中数学 来源: 题型:
【题目】仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.
(1)第一批仙桃每件进价是多少元?
(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校初三学生每周平均阅读时间的情况,随机抽查了该校初三m名学生,对其每周平均课外阅读时间进行统计,绘制了条形统计图和扇形统计图.
根据以上信息回答下列问题:
(1)求m的值;
(2)求扇形统计图中阅读时间为3小时的扇形圆心角的度数;
(3)求出这组数据的平均数.(精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=-与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______.
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(3,2)和点M(m,n)都在反比例函数y=(x>0)的图象上.
(1)k的值为 ;
(2)当m=4,求直线AM的解析式;
(3)当m>3时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,直线AM交x轴与点Q,试说明四边形ABPQ是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售一种商品,经市场调査发现,该商品的周销售量y(件)是售价x(元/件)的一次函数.其售价、周销售量、周销售利润w(元)的三组对应值如表:
售价x(元/件) | 50 | 60 | 80 |
周销售量y(件) | 100 | 80 | 40 |
周销售利润w(元) | 1000 | 1600 | 1600 |
注:周销售利润=周销售量×(售价﹣进价)
(1)求y关于x的函数解析式_____;
(2)当售价是_____元/件时,周销售利润最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.
(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A1,A2,A3是抛物线y=x2+1(x>0)上的三点,且A1,A2,A3三点的横坐标为连续的整数,连接A1A3,过A2作A2Q⊥x轴于点Q,交A1A3于点P,则线段PA2的长为__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com