【题目】如图,过反比例函数y= (x>0)的图像上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为( )
A.2
B.3
C.4
D.5
科目:初中数学 来源: 题型:
【题目】阅读理解:
如图①,在平面直角坐标系中,若已知点A(xA,yA)和点C(xC,yC),点M为线段AC的中点,利用三角形全等的知识,有△AMP≌△CMQ,则有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,从而有,即中点M的坐标为(,).
基本知识:
(1)如图①,若A、C点的坐标分别A(﹣1,3)、C(3,﹣1),求AC中点M的坐标;
方法提炼:
(2)如图②,在平面直角坐标系中,ABCD的顶点A、B、C的坐标分别为(﹣1,5)、(﹣2,2)、(3,3),求点D的坐标;
(3)如图③,点A是反比例函数y=(x>0)上的动点,过点A作AB∥x轴,AC∥y轴,分别交函数y═(x>0)的图象于点B、C,点D是直线y=2x上的动点,请探索在点A运动过程中,以A、B、C、D为顶点的四边形能否为平行四边形,若能,求出此时点A的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).
①画出“基本图形”关于原点O对称的四边形A1B1C1D1 , 并填出A1 , B1 , C1 , D1的坐标;
②画出“基本图形”绕B点顺时针旋转90°所成的四边形A2B2C2D2
A1( , )B1( , )
C1( , )D1( , )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
A. 4 B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.
(1)求购买1块电子白板和一台笔记本电脑各需多少元?
(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?
(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.
(1)求证:NQ⊥PQ;
(2)若⊙O的半径R=2,NP= ,求NQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给定一列数,我们把这列数中的第一个数记为a1,第二个数记为a2,第三个数记为a3,依此类推,第n个数记为an(n为正整数),如下面这列数2,4,6,8,10中,a1=2,a2=4,a3=6,a4=8,a5=10.规定运算sum(a1:an)=a1+a2+a3+…+an.即从这列数的第一个数开始依次加到第n个数,如在上面的一列数中,sum(a1:a3)=2+4+6=12.
(1)已知一列数1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,求a3,sum(a1:a10)的值.
(2)已知这列数1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,…,按照规律可以无限写下去,求a2018,sum(a1:a2018)的值.
(3)在(2)的条件下否存在正整数n使等式|sum(a1:an)|=50成立?如果有,写出n的值,如果没有,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.
(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△PAC为等边三角形,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com