精英家教网 > 初中数学 > 题目详情

已知如图所示,点E是正方形ABCD的边CD上的点,点F是CB的延长线上的点,且EA⊥AF.

求证:DE=BF.

答案:
解析:

  证明:∵四边形ABCD是正方形

  ∴AB=AD,∠BAD=∠ADE=∠ABF=

  ∵EA⊥AF

  ∴∠BAF+∠BAE=∠BAE+∠DAE=

  ∴∠BAF=∠DAE,∴Rt△ABF≌Rt△ADE,

  ∴DE=BF


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、定义:弦切角:顶点在圆上,一边与圆相交,另一边和圆相切的角叫弦切角.
问题情景:已知如图所示,直线AB是⊙O的切线,切点为C,CD为⊙O的一条弦,∠P为弧CD所对的圆周角.
(1)猜想:弦切角∠DCB与∠P之间的关系.试用转化的的思想:即连接CO并延长交⊙O于点E,连接DE,来论证你的猜想.
(2)用自己的语言叙述你猜想得到的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

定义:弦切角:顶点在圆上,一边与圆相交,另一边和圆相切的角叫弦切角.
问题情景:已知如图所示,直线AB是⊙O的切线,切点为C,CD为⊙O的一条弦,∠P为弧CD所对的圆周角.
(1)猜想:弦切角∠DCB与∠P之间的关系.试用转化的思想:即连接CO并延长交⊙O于点E,连接DE,来论证你的猜想.
(2)用自己的语言叙述你猜想得到的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义:弦切角:顶点在圆上,一边与圆相交,另一边和圆相切的角叫弦切角.
问题情景:已知如图所示,直线AB是⊙O的切线,切点为C,CD为⊙O的一条弦,∠P为弧CD所对的圆周角.
(1)猜想:弦切角∠DCB与∠P之间的关系.试用转化的思想:即连接CO并延长交⊙O于点E,连接DE,来论证你的猜想.
(2)用自己的语言叙述你猜想得到的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2008-2009学年西部地区九年级(上)第二次月考数学试卷(解析版) 题型:解答题

定义:弦切角:顶点在圆上,一边与圆相交,另一边和圆相切的角叫弦切角.
问题情景:已知如图所示,直线AB是⊙O的切线,切点为C,CD为⊙O的一条弦,∠P为弧CD所对的圆周角.
(1)猜想:弦切角∠DCB与∠P之间的关系.试用转化的思想:即连接CO并延长交⊙O于点E,连接DE,来论证你的猜想.
(2)用自己的语言叙述你猜想得到的结论.

查看答案和解析>>

同步练习册答案