精英家教网 > 初中数学 > 题目详情

【题目】菱形ABCD的边长为4cm,A=120°,则菱形ABCD的面积为______

【答案】8cm

【解析】

根据已知条件和菱形的性质易证△ABC为等边三角形,即可得AC=AB=4cm.由此求得OA=2cm,在直角△AOB为中,根据勾股定理求得的OB= cm,即可得BD=4cm,由菱形的面积等于对角线乘积的一半即可求解.

在菱形ABCD中,∠BAC=∠BAD=×120°=60°,AB=BC,AC⊥BD,OA=OC,OB=OD,

又∵在△ABC中,AB=BC,

∴△ABC为等边三角形,

∴AC=AB=4cm.

∴OA=2cm,

在直角△AOB为中,根据勾股定理求得的OB= cm,

∴BD=2BO=4cm,

菱形ABCD的面积为: AC×BD=×4×4=8 cm.

故答案为:8 cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】a,b,c△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.

(1)试判断△ABC的形状;

(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程

(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;

(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2+bx图象的对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1≤x≤2的范围内有解,则t的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知直线与直线相交于点

1)求点的坐标;

2)点内部一点,连接,求的最小值;

3)将点向下平移一个单位得到点,连接,将绕点旋转至的位置,使轴,再将沿轴上下平移得到,在平移过程中,直线轴交于点,在直线上任取一点,连接能否以为直线边构成等腰直角三角形?若能,请直接写出所有符合条件的点的坐标,若不能,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,斜边AB=5,而直角边BC,AC之长是一元二次方程x2-(2m-1)x+4(m-1)=0的两根,则m的值是(

A. 4 B. -1 C. 4-1 D. -41

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AEBC,AFCD,垂足分别为E,F,且BE=DF.

(1)求证:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y = 2x2 -4x -6.

(1)用配方法将y = 2x2 -4x -6化成y = a (x - h) 2 + k的形式;并写出对称轴和 顶点坐标。

(2)在平面直角坐标系中,画出这个二次函数的图象;

(3)当时,求y的取值范围;

(4)求函数图像与两坐标轴交点所围成的三角形的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有四张背面完全相同的纸牌,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.

(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;

(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用表示).

查看答案和解析>>

同步练习册答案