精英家教网 > 初中数学 > 题目详情

在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E,F,AD=4,BC=8,则AE+EF=


  1. A.
    9
  2. B.
    10
  3. C.
    11
  4. D.
    20
B
分析:先根据题意作出辅助线:延长BC至G,使DG∥AC,由AD∥BC,可知四边形ADGC为平行四边形,得出DG=AC,而等腰梯形中两对角线相等,得出DG=BD,而DF⊥BG,则△AEC为等腰直角三角形,从而得到FC=FG-AD=2,则EF=BC-2FC=8-2FC=4,得出AE+EF的值.
解答:解:过D点作AC的平行线,交BC的延长线于G点,
∵AD∥BC,
∴四边形ADGC为平行四边形,
∴DG=AC,
∵AC⊥BD,
∴DG⊥BD,
∵等腰梯形ABCD,
∴AC=BD,
∴DG=BD,
∴△DBG为等腰直角三角形,
∴∠G=∠ACE=45°,
∴AE=CE=6,
∴FC=6-4=2,
∴EF=BC-2FC=8-2FC=4,
∴AE+EF=6+4=10.
故选B.
点评:此题考查了等腰梯形的性质,关键是作辅助线,然后利用等腰梯形的性质和等腰直角三角形求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,则下底BC的长为
7
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,点P为BC边上任意一点,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分别是E、F、G,请你探索PE、PF、BG的长度之间的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.
(1)求证:四边形AECD是平行四边形;
(2)当∠B=2∠DCA时,求证:四边形AECD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,MB=MC吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足为O,过D作DE∥AC交BC的延长线于E.
(1)求证:四边形ACED是平行四边形;
(2)若AD=4,BC=8,求梯形ABCD的面积.

查看答案和解析>>

同步练习册答案