精英家教网 > 初中数学 > 题目详情
已知:二次函数y=(n-1)x2+2mx+1图象的顶点在x轴上.
(1)试判断这个二次函数图象的开口方向,并说明你的理由;
(2)求证:函数y=m2x2+2(n-1)x-1的图象与x轴必有两个不同的交点;
(3)如果函数y=m2x2+2(n-1)x-1的图象与x轴相交于点A(x1,0)、B(x2,0),与y轴相交于点C,且△ABC的面积等于2.求这个函数的解析式?
分析:(1)本题需根据二次函数图象的顶点在x轴上得出4m2-4(n-1)=0,从而得出n-1>0,证出抛物线开口向上.
(2)本题需先求出△的值,再证明△>0即可得出函数的图象与x轴必有两个交点.
(3)本题需根据根与系数的关系列出式子,求出AB的长,列出方程求m2与n即可求出这个函数的解析式.
解答:(1)∵二次函数y=(n-1)x2+2mx+1图象的顶点在x轴上,
∴n-1≠0,△=4m2-4(n-1)=0.
∴m2=n-1≠0.
又∵m2≥0,∴n-1>0.
∴这个函数图象的开口方向向上.
(2)∵m2≠0,
∴这个函数是二次函数.△=4(n-1)2+4m2
∵m2=n-1≠0,∴(n-1)2>0,m2>0.
∴△>0.
∴函数y=m2x2+2(n-1)x-1的图象与x轴必有两个不同的交点.
(3)由题意,得x1+x2=-
2(n-1)
m2
x1x2=-
1
m2

∵m2=n-1,∴x1+x2=-
2(n-1)
m2
=-2

而AB=|x1-x2|,点C的坐标为(0,-1).
1
2
|x1-x2|×1=2

∴|x1-x2|=4.
(x1-x2)2=(x1+x2)2-4x1x2=(-2)2+
4
m2
=16

m2=
1
3

n-1=
1
3

∴所求的函数解析式为y=
1
3
x2+
2
3
x-1
点评:本题主要考查了二次函数的图象与x轴的交点,在解题时要能根据二次函数的图象与x轴的交点列出式子求出答案是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足
1
AO
-
1
OB
=
2
CO

(1)求这个二次函数的解析式;
(2)是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴精英家教网交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案