分析 根据题意把函数解析式进行变形,根据一元二次方程根的判别式解答即可.
解答 解:函数解析式变形为:yx2+2y=ax2+bx+6,
即(a-y)2+bx+6-2y=0,
由题意得,△=b2-4×(a-y)(6-2y)≥0,
整理得,y2-(3+a)y+3a-$\frac{{b}^{2}}{8}$≤0,
则2和6是方程y2-(3+a)y+3a-$\frac{{b}^{2}}{8}$=0的两个根,
∴3+a=2+6,3a-$\frac{{b}^{2}}{8}$=2×6,
解得,a=5,b=±2$\sqrt{6}$.
点评 本题考查的是二次函数的最值的求法,掌握二次函数与一元二次方程的关系、灵活运用一元二次方程根的判别式是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com