精英家教网 > 初中数学 > 题目详情

【题目】如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.

(1)求证:△AOE≌△COF;

(2)求证:四边形AFCE为菱形;

(3)求菱形AFCE的周长.

【答案】(1)详见解析;(2)详见解析;(3)20cm.

【解析】

(1)求出AO=OCAOE=COF,根据平行的性质得出∠EAO=FCO,根据ASA即可得出两三角形全等;

(2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EFAC即可推出四边形是菱形;

(3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在RtABF中,由勾股定理得出方程42+(8-x2=x2,求出x的值,进而得到菱形AFCE的周长.

(1)证明:∵EFAC的垂直平分线,

AO=OCAOE=COF=90°,

∵四边形ABCD是矩形,

ADBC

∴∠EAO=FCO

AOECOF中,

∴△AOE≌△COF(ASA);

(2)证明:∵△AOE≌△COF

OE=OF

OA=OC

∴四边形AFCE为平行四边形,

又∵EFAC

∴平行四边形AFCE为菱形;

(3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,

RtABF中,由勾股定理得:

AB2+BF2=AF2

42+(8﹣x2=x2

解得x=5.

所以菱形AFCE的周长为5×4=20cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DAB边的中点,过点D作边AB的垂线lEl上任意一点,且AC=5BC=8,则△AEC的周长最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为、宽为的全等小矩形,且> .(以上长度单位:cm)

(1)观察图形,可以发现代数式可以因式分解为

(2)若每块小矩形的面积为10,四个正方形的面积和为58,试求图中所有裁剪线(虚线部分)长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,外一点,平分,若,则的大小是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;

(2)连接DE,若AD=2AB,求证:DEAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图(1)在ABC中,∠BAC90°ABAC,直线m经过点ABD⊥直线mCE⊥直线m,垂足分别为点DE.求证:DEBD+CE

2)如图(2)将(1)中的条件改为:在ABC中,ABACDAE三点都在直线m上,并且有∠BDA=∠AEC=∠BACα,其中α为任意锐角或钝角.请问结论DEBD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC

(1)求点A、C的坐标;

(2)将ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得APC与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由

查看答案和解析>>

同步练习册答案