精英家教网 > 初中数学 > 题目详情
12.已知A(x1,y1)是一次函数y=-x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是(  )
A.b<0B.b>0C.b>-1D.b<-1

分析 先根据题意判断出函数图象经过的象限,进而可得出结论.

解答 解:∵一次函数y=-x+b+1中,k=-1<0,
∴函数图象经过二、四象限.
∵x1<0,y1<0,
∴函数图象经过第三象限,
∴b+1<0,即b<-1.
故选D.

点评 本题考查的是一次函数图象上点的坐标特征,熟知一次函数的图象与系数的关系是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:

(1)求被抽样调查的学生有多少人?并补全条形统计图;
(2)每天户外活动时间的中位数是1小时?
(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)$\sqrt{9}$-$\sqrt{(-6)^{2}}$-$\root{3}{-27}$
(2)|$\sqrt{6}$-$\sqrt{3}$|-|3-$\sqrt{6}$|
(3)求出x的值:x2-$\frac{121}{49}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.
习题解答
习题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.
解:
∵正方形ABCD中,AB=AD,∠BAD=∠ADC=90°
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°-45°=45°=∠EAF.
又∵AE′=AE,AF=AF
∴△AE′FF≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
习题研究.
观察分析:
观察图1,由解答可知,该题有用的条件是①.ABCD是四边形,点E、F分别在边BC、CD上;②.AB=AD;③.∠B=∠D=90°∠;④.∠EAF=$\frac{1}{2}$∠BAD.
类比猜想:
在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?
要解决上述问题,可从特例入手,请同学们思考:如图2,在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?试证明.
(2)在四边形ABCD中,点E、F分别在边BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=$\frac{1}{2}$∠BAD时,还有EF=BE+DF吗?使用图3证明.
归纳概括:
反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=$\frac{1}{2}$∠BAD时,EF=BE+DF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.我省深入推进千万亩森林增长工程,2015年新造林226.3万亩,其中226.3万用科学记数法表示为(  )
A.226.3×104B.2.263×105C.2.263×106D.2.263×107

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,两建筑物AB和CD的水平距离为24米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为16$\sqrt{3}$米.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知(2-a)(3-a)=5.
(1)求(a-2)2+(3-a)2的值;
(2)求a2+a-2的值;
(3)求$\frac{3{a}^{2}+3}{{a}^{4}-4{a}^{3}+4}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.约分①$\frac{5ab}{{20{a^2}b}}$=$\frac{1}{4a}$; ②$\frac{a+2}{{{a^2}-4}}$=$\frac{1}{a-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(0,-2),B(3,-1),C(2,1).平移△ABC使顶点C与原点O重合,得到△A′B′C′.
(1)请在图中画出△ABC平移后的图形△A′B′C;直接写出点A′和B′的坐标:A′(-2,-3),B′(1,-2);
(2)点A′在第三象限,到x轴的距离为3,到y轴的距离为2;
(3)若P(a,b)为△ABC内一点,求平移后对应点P′的坐标.

查看答案和解析>>

同步练习册答案