精英家教网 > 初中数学 > 题目详情
如图,在等腰△ABC中,AB=AC,D是AB上的动点,作等腰△EDC∽△ABC.
求证:(1)△ACE∽△BCD;
(2)AE∥BC.

【答案】分析:(1)由△EDC∽△ABC 可以得到,∠ECD=∠ACB,接着得到∠ACE=∠BCD,利用相似三角形的判定得到△ACE∽△BCD;
(2)根据相似三角形的性质得到∠EAC=∠B,由AB=AC可以得到∠B=∠ACB,由此利用平行线的判定即可证明AE∥BC.
解答:证明:(1)∵△EDC∽△ABC (1分)
,∠ECD=∠ACB(2分)
∴∠ACE=∠BCD (1分)
∴△ACE∽△BCD(2分);

(2)根据(1)得∠EAC=∠B(1分)
∵AB=AC (1分)
∴∠B=∠ACB (1分)
∴∠EAC=∠ACB (1分)
∴AE∥BC (2分)
点评:此题主要考查了相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与平顶尖级问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,BE⊥AC,垂足为E,则∠1与∠A的关系式为(  )
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,在等腰△ABC中,AB=AC,∠ABC=α,在四边形BDEC中,DB=DE,∠BDE=2α,M为CE的中点,连接AM,DM.
(1)在图中画出△DEM关于点M成中心对称的图形;
(2)求证AM⊥DM;
(3)当α=
45°
,AM=DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

同步练习册答案