精英家教网 > 初中数学 > 题目详情
6.在横线上填写理由,完成下面的证明.
如图,已知∠1+∠2=180°,∠B=∠3,求证∠C=∠AED
证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=∠DFE(同角的补角相等)
∴AB∥EF(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∵∠B=∠3(已知)
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行)
∴∠C=∠AED(两直线平行,同位角相等 )

分析 求出∠2=∠DFE,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,根据平行线的判定得出DE∥BC,即可得出答案.

解答 证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),
∴∠2=∠DFE(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
又∵∠B=∠3(已知),
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行),
∴∠C=∠AED(两直线平行,同位角相等),
故答案为:邻补角定义,同角的补角相等,内错角相等,两直线平行,两直线平行,内错角相等,等量代换,同位角相等,两直线平行,两直线平行,同位角相等.

点评 本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,联结ED、EC、AC.添加一个条件,能使四边形ACDE成为菱形的是(  )
A.AB=ADB.AB=EDC.CD=AED.EC=AD

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在数轴上表示-1的点与表示$\sqrt{2}$的点的距离$\sqrt{2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二元一次方程组$\left\{{\begin{array}{l}{2x+3y=5}\\{2x-y=1}\end{array}}\right.$的解也是方程8x-2y=k的解,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列计算不正确的是(  )
A.$\sqrt{5}$-$\sqrt{3}$=$\sqrt{2}$B.3$\sqrt{5}$×2$\sqrt{3}$=6$\sqrt{15}$C.(2$\sqrt{2}$)2=8D.$\frac{3}{\sqrt{3}}$=$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)(π-3.14)0+(-3)-2-$\sqrt{4}$+2sin30°
(2)$\frac{2}{x-1}$÷($\frac{2}{{x}^{2}-1}$+$\frac{1}{x+1}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在四边形ABCD中,AB=3,BC=4,AD=5$\sqrt{2}$,CD=5,∠ABC=90°,求对角线BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,Rt△ABC中,∠BCA=90°,AB=$\sqrt{5}$,AC=2,D为斜边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在图1至图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边和AD在同一直线上.
操作示例:
当AE<a时,如图1,在BA上选取适当的点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰好构成四边形FGCH.
思考发现:
小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,已知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1所示),
实践探究:
(1)小明判断出四边形FGCH是正方形,请你给出判断四边形FGCH是正方形的方法.
(2)经测量,小明发现图1中BG是AE一半,请你证明小明的发现是正确的.(提示:过点F作FM⊥AH,垂足为点M);
拓展延伸:
(3)类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.

查看答案和解析>>

同步练习册答案