分析 求出∠2=∠DFE,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,根据平行线的判定得出DE∥BC,即可得出答案.
解答 证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),
∴∠2=∠DFE(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
又∵∠B=∠3(已知),
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行),
∴∠C=∠AED(两直线平行,同位角相等),
故答案为:邻补角定义,同角的补角相等,内错角相等,两直线平行,两直线平行,内错角相等,等量代换,同位角相等,两直线平行,两直线平行,同位角相等.
点评 本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
科目:初中数学 来源: 题型:选择题
A. | AB=AD | B. | AB=ED | C. | CD=AE | D. | EC=AD |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{5}$-$\sqrt{3}$=$\sqrt{2}$ | B. | 3$\sqrt{5}$×2$\sqrt{3}$=6$\sqrt{15}$ | C. | (2$\sqrt{2}$)2=8 | D. | $\frac{3}{\sqrt{3}}$=$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com