【题目】如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=20°,则∠A′BD的度数为_____°.
【答案】25.
【解析】
由折叠的性质可得:∠ABD=∠A′BD,∠A=∠BA′D,又由DC⊥BC,∠A′BC=20°,可求得∠A的度数,然后由AD∥BC,根据两直线平行,同旁内角互补,即可得∠A+∠ABD+∠A′BD+∠A′BC=180°,则可求得∠A′BD的度数.
根据折叠的性质可得:∠ABD=∠A′BD,∠A=∠BA′D,
∵DC⊥BC,
∴∠C=90°,
∵∠A′BC=20°,
∴∠BA′D=∠A′BC+∠C=110°,
∴∠A=110°,
∵AD∥BC,
∴∠A+∠ABC=180°,
即∠A+∠ABD+∠A′BD+∠A′BC=180°,
∴110°+2∠A′BD+20°=180°,
∴∠A′BD=25°.
故答案为:25.
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE则CD+DE的最小值为( )
A. 8 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.
(1)求证:;
(2)判断AF与BD是否平行,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB =40°,∠AOC= ∠BOC,则∠AOC的度数为20°;③若线段AB=3, BC=2,则线段AC的长为1或5;④若∠a+∠β=180°,且∠a<∠β,则∠a的余角为(∠β-∠a).其中正确结论的个数( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)直接写出k的值及点E的坐标;
(2)若点F是OC边上一点,且FB⊥DE,求直线FB的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线上有一点,过作射线,嘉琪将一直角三角板的直角顶点与重合.
(1)嘉琪把三角板如图1放置,若,则 , ;
(2)嘉琪将直角三角板绕点顺时针旋转一定角度后如图2,使平分,且,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2每辆60座客车租金共计1880元
(1) 求两种车租金每辆各多少元?
(2) 若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中;点为坐标原点,点,点、在坐标轴上,点在边上,直线交轴于点.对于坐标平面内的直线,先将该直线向右平移个单位长度,再向下平移个单位长度,这种直线运动称为直线的斜平移.现将直线经过次斜平移,得到直线.
(备用图)
(1)求直线与两坐标轴围成的面积;
(2)求直线与的交点坐标;
(3)在第一象限内,在直线上是否存在一点,使得是等腰直角三角形?若存在,请直接写出点的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com