精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC,BD、CE分别是∠ABC和∠ACB的平分线,AN⊥BD于点N,AM⊥CE于点M.

求证:AM=AN.

答案:
解析:

  证明:因为AB=AC,所以∠ABC=∠ACB.

  又因为BD、CE分别平分∠ABC、∠ACB,

  所以∠ABD=∠ACE.

  因为AM⊥CE,AN⊥BD,所以∠AMC=∠ANB=90°.

  在Rt△AMC和Rt△ANB中,

  因为∠AMC=∠ANB,∠ACM=∠ABN,AC=AB,

  所以Rt△AMC≌Rt△ANB.所以AM=AN.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案