精英家教网 > 初中数学 > 题目详情

如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为________cm.
(精确到个位,参考数据:数学公式≈1.4,数学公式≈1.7,数学公式≈2.2).

2
分析:本题中,要求露出外面的管长h的最短值,其实相当于求一个3×4×10长方体的对角线(此时,h最小),据此解答即可.
解答:解:如图所示:连接DC,CF,
由题意:ED=3,EC=5-1=4
CD2=32+42=25=52
CF2=52+102=125,
∴吸管口到纸盒内的最大距离==5≈11cm.
∴h=13-11≈2cm.
故答案为:2.
点评:本题要弄清楚h最短时管子的摆放姿势,然后根据勾股定理即可得出结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面精英家教网墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度)
(1)若想水池的总容积为36m3,x应等于多少?
(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;
(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

查看答案和解析>>

科目:初中数学 来源:2013-2014学年浙江慈溪育才中学九年级第一学期第二次月考数学试卷(解析版) 题型:解答题

某农户计划利用现有的一面墙(墙长8米),再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度).

(1)若想水池的总容积为36m3,x应等于多少?

(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;

(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

 

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》常考题集(18):6.4 二次函数的应用(解析版) 题型:解答题

某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度)
(1)若想水池的总容积为36m3,x应等于多少?
(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;
(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

查看答案和解析>>

科目:初中数学 来源:第26章《二次函数》中考题集(23):26.3 实际问题与二次函数(解析版) 题型:解答题

某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度)
(1)若想水池的总容积为36m3,x应等于多少?
(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;
(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省盐城市东台市富安中学九年级(上)双休日数学作业(第10周)(解析版) 题型:解答题

某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度)
(1)若想水池的总容积为36m3,x应等于多少?
(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;
(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

查看答案和解析>>

同步练习册答案