Ö±Ïßl¾­¹ýA£¨1£¬0£©ÇÒÓëË«ÇúÏßy=
m
x
(x£¾0)
ÔÚµÚÒ»ÏóÏÞ½»ÓÚµãB£¨2£¬1£©£¬¹ýµãP£¨p+1£¬p-1£©£¨p£¾1£©×÷xÖáµÄƽÐÐÏß·Ö±ð½»ÓÚË«ÇúÏßy=
m
x
(x£¾0)
ºÍy=-
m
x
£¨x£¼0£©ÓÚM£¬NÁ½µã£¬
£¨1£©ÇómµÄÖµ¼°Ö±ÏßlµÄ½âÎöʽ£»
£¨2£©Ö±Ïßy=-x-3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãC¡¢D£¬µãEÔÚÖ±Ïßy=-x-3ÉÏ£¬ÇÒµãEÔÚµÚÈýÏóÏÞ£¬Ê¹µÃ
CE
ED
=2
£¬Æ½ÒÆÏ߶ÎEDµÃÏ߶ÎHQ£¨µãEÓëH¶ÔÓ¦£¬µãDÓëQ¶ÔÓ¦£©£¬Ê¹µÃH¡¢QÇ¡ºÃ¶¼ÂäÔÚy=
m
x
µÄͼÏóÉÏ£¬ÇóH¡¢QÁ½µã×ø±ê£®
£¨3£©ÊÇ·ñ´æÔÚʵÊýp£¬Ê¹µÃS¡÷AMN=4S¡÷APM£¿Èô´æÔÚ£¬ÇóËùÓÐÂú×ãÌõ¼þµÄpµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÓɵãB£¨2£¬1£©ÔÚy=
m
x
ÉÏ£¬ÓÐ1=
m
2
£¬¼´m=2£®
ÉèÖ±ÏßlµÄ½âÎöʽΪy=kx+b£¬
ÓɵãA£¨1£¬0£©£¬µãB£¨2£¬1£©ÔÚy=kx+bÉÏ£¬
µÃ
k+b=0
2k+b=1
£¬
½âµÃ
k=1
b=-1
£¬
¹ÊËùÇóÖ±ÏßlµÄ½âÎöʽΪy=x-1£»

£¨2£©¡ßÖ±Ïßy=-x-3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãC¡¢D£¬µãEÔÚÖ±Ïßy=-x-3ÉÏ£¬ÇÒµãEÔÚµÚÈýÏóÏÞ£¬Ê¹µÃ
CE
ED
=2
£¬
¡àDµãµÄºá×ø±ê±ÈEµãµÄºá×ø±ê´ó1£¬DµãµÄ×Ý×ø±ê±ÈEµãµÄ×Ý×ø±êС1£»
¡àHµãµÄºá×ø±ê±ÈQµãµÄºá×ø±ê´ó1£¬HµãµÄ×Ý×ø±ê±ÈQµãµÄ×Ý×ø±êС1£¬
ÉèHµãµÄ×ø±êΪ£¨u£¬v£©£¬QµãµÄ×ø±ê£¨u+1£¬v-1£©£¬Ôò
uv=2
(u+1)(v-1)=2
£¬
½âµÃ
u1=1
v1=2
£¬
u2=-2
v2=-1
£¨²»ºÏÌâÒâÉáÈ¥£©£¬
ÔòHµãµÄ×ø±êΪ£¨1£¬2£©£¬QµãµÄ×ø±ê£¨2£¬1£©£»

£¨3£©´æÔÚ£®ÀíÓÉÈçÏ£º
¡ßPµã×ø±êΪ£¨p+1£¬p-1£©£¬MN¡ÎxÖᣬ
¡àµãM¡¢NµÄ×Ý×ø±ê¶¼Îªp-1£¬
¡àM£¨
2
p-1
£¬p-1£©£¬N£¨-
2
p-1
£¬p-1£©£¬¿ÉµÃMN=
4
p-1
£¬
¡àS¡÷AMN=
1
2
4
p-1
•£¨p-1£©=2£¬
µ±p£¾1ʱ£¬S¡÷APM=
1
2
£¨p+1-
2
p-1
£©£¨p-1£©=
1
2
£¨p2-3£©£¬
¡ßS¡÷AMN=4S¡÷APM£¬
¡à4¡Á
1
2
£¨p2-3£©=2£¬
½âµÃp1=-2£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬p2=2£®
¡àÂú×ãÌõ¼þµÄpµÄֵΪ2£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ1£¬ÒÑÖªµãA£¨a£¬0£©£¬B£¨0£¬b£©£¬ÇÒa¡¢bÂú×ã
a+1
+(a+b+3)2=0
£¬?ABCDµÄ±ßADÓëyÖá½»ÓÚµãE£¬ÇÒEΪADÖе㣬˫ÇúÏßy=
k
x
¾­¹ýC¡¢DÁ½µã£®
£¨1£©ÇókµÄÖµ£»
£¨2£©µãPÔÚË«ÇúÏßy=
k
x
ÉÏ£¬µãQÔÚyÖáÉÏ£¬ÈôÒÔµãA¡¢B¡¢P¡¢QΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÊÔÇóÂú×ãÒªÇóµÄËùÓеãP¡¢QµÄ×ø±ê£»
£¨3£©ÒÔÏ߶ÎABΪ¶Ô½ÇÏß×÷Õý·½ÐÎAFBH£¨Èçͼ3£©£¬µãTÊDZßAFÉÏÒ»¶¯µã£¬MÊÇHTµÄÖе㣬MN¡ÍHT£¬½»ABÓÚN£¬µ±TÔÚAFÉÏÔ˶¯Ê±£¬
MN
HT
µÄÖµÊÇ·ñ·¢Éú¸Ä±ä£¿Èô¸Ä±ä£¬Çó³öÆä±ä»¯·¶Î§£»Èô²»¸Ä±ä£¬ÇëÇó³öÆäÖµ£¬²¢¸ø³öÄãµÄÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ£¬¾ØÐÎOABCµÄÁ½±ßOA¡¢OC·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬OA=4£¬OC=2£¬GΪ¾ØÐζԽÇÏߵĽ»µã£¬¾­¹ýµãGµÄË«ÇúÏßy=
k
x
ÓëBCÏཻÓÚµãM£¬ÔòCM£ºMB=______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ijÐîË®³ØµÄÅÅË®¹ÜµÀÿСʱÅÅË®8m3£¬6Сʱ¿É½«Âú³ØË®ÅÅ¿Õ£¬Èç¹ûÔö¼ÓÅÅË®¹Ü£¬Ê¹Ã¿Ð¡Ê±ÅÅË®Á¿´ïµ½Q£¨m3£©£¬½«Âú³ØË®ÅÅ¿ÕËùÐèʱ¼äΪt£¨h£©£®
£¨1£©ÇóQÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨2£©Èç¹û×¼±¸ÔÚ²»³¬¹ý4СʱÄÚ½«Âú³ØË®ÅÅ¿Õ£¬ÄÇôÿСʱÅÅË®Á¿ÖÁÉÙΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ£¬¡÷AOBΪµÈ±ßÈý½ÇÐΣ¬µãBµÄ×ø±êΪ£¨-2£¬0£©£¬¹ýµãC£¨2£¬0£©×÷Ö±Ïßl½»AOÓÚµãD£¬½»ABÓÚE£¬µãEÔÚ·´±ÈÀýº¯Êýy=
k
x
(x
£¼0£©µÄͼÏóÉÏ£¬Èô¡÷ADEºÍ¡÷DCO£¨¼´Í¼ÖÐÁ½ÒõÓ°²¿·Ö£©µÄÃæ»ýÏàµÈ£¬ÔòkֵΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ£¬ÒÑÖªÖ±Ïßy=mx+n½»xÖáÓÚA£¬½»yÖáÓÚb£¬ÇÒ¡ÏBAO=30¡ã£¬PΪy=
k
x
ÉÏÒ»µã£¬PE¡ÍyÖáÓÚE£¬PF¡ÍxÖáÓÚF£¬·Ö±ð½»ABÓÚM£¬N£¬ÈôAM•BN=
4
3
£¬Ôòk=______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¡÷ABCµÄ±ßACÔÚxÖáÉÏ£¬±ßBC¡ÍxÖᣬ˫ÇúÏßy=
k
x
(x£¾0)
Óë±ßBC½»ÓÚµãD£¨4£¬m£©£¬Óë±ßAB½»ÓÚµãE£¨2£¬n£©£®
£¨1£©Çón¹ØÓÚmµÄº¯Êý¹Øϵʽ£»
£¨2£©ÈôBD=2£¬tan¡ÏBAC=
1
2
£¬ÇókµÄÖµºÍµãBµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ1£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µÈÑüRt¡÷AOBµÄб±ßOBÔÚxÖáÉÏ£¬Ö±Ïßy=3x-4¾­¹ýµÈÑüRt¡÷AOBµÄÖ±½Ç¶¥µãA£¬½»yÖáÓÚCµã£¬Ë«ÇúÏßy=
k
x
Ò²¾­¹ýAµã£®
£¨1£©ÇóµãA×ø±ê£»
£¨2£©ÇókµÄÖµ£»
£¨3£©ÈôµãPΪxÕý°ëÖáÉÏÒ»¶¯µã£¬ÔÚµãAµÄÓÒ²àµÄË«ÇúÏßÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃ¡÷PAMÊÇÒÔµãAΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨4£©ÈôµãPΪx¸º°ëÖáÉÏÒ»¶¯µã£¬ÔÚµãAµÄ×ó²àµÄË«ÇúÏßÉÏÊÇ·ñ´æÔÚÒ»µãN£¬Ê¹µÃ¡÷PANÊÇÒÔµãAΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãNµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ijУ³õÈý£¨1£©°à50ÃûѧÉú²Î¼Ó1·ÖÖÓÌøÉþÌåÓý¿¼ÊÔ£®1·ÖÖÓÌøÉþ´ÎÊýÓëƵÊý¾­Í³¼Æºó»æÖƳöÏÂÃæµÄƵÊý·Ö²¼±í£¨60¡«70±íʾΪ´óÓÚµÈÓÚ60²¢ÇÒСÓÚ70£©ºÍÉÈÐÎͳ¼Æͼ£®
µÈ¼¶·ÖÊý¶Î1·ÖÖÓÌøÉþ´ÎÊý¶ÎƵÊý£¨ÈËÊý£©
A120254¡«3000
110¡«120224¡«2543
B100¡«110194¡«2249
90¡«100164¡«194m
C80¡«90148¡«16412
70¡«80132¡«148n
D60¡«70116¡«1322
0¡«600¡«1160
£¨1£©Çóm¡¢nµÄÖµ£»
£¨2£©Çó¸Ã°à1·ÖÖÓÌøÉþ³É¼¨ÔÚ80·ÖÒÔÉÏ£¨º¬80·Ö£©µÄÈËÊýռȫ°àÈËÊýµÄ°Ù·Ö±È£»
£¨3£©¸ù¾ÝƵÊý·Ö²¼±í¹À¼Æ¸Ã°àѧÉú1·ÖÖÓÌøÉþµÄƽ¾ù·Ö´óÔ¼ÊǶàÉÙ£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸