精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.
.

试题分析:要求四边形ACEB的周长,由题意可知:求出AB和EB的长是解答本题的关键.由条件∠ACB=90°,DE⊥BC,CE∥AD,易证明四边形ACED是平行四边形,可得DE=AC=2.再由D是BC的中点DB的长度,然后分别利用勾股定理求出Rt△BDE和Rt△ACB的边AB和EB的长,从而可求出四边形ACEB的周长.
试题解析:
解:∵∠ACB=90°,DE⊥BC,
∴AC∥DE.
又∵CE∥AD,
∴四边形ACED是平行四边形.
∴DE=AC=2.
在Rt△CDE中,由勾股定理得CD=
∵D是BC的中点,

在△ABC中,∠ACB=90°,由勾股定理得AB=
∵D是BC的中点,DE⊥BC,
∴EB=EC=4.
∴四边形ACEB的周长=AC+CE+EB+BA=.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.

(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某数学兴趣小组开展了一次课外活动,过程如下:如图,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.

(1)求证:DP=DQ;
(2)如图,小明在图①的基础上做∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)如图,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.

(1)若AE=2,求EF的长;
(2)求证:PF=EP+EB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,梯形ABCD中,AD//BC,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠ACB=90º,AC>BC,分别以AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是(   )

A.S1=S2=S3        B.S1=S2<S3          CS1=S3<S2       D.S2=S3<S1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

平行四边形ABCD中,若AB="8cm," 则对角线AC、BD的长可能是(  )
A、6cm,10cm      B、6cm,12cm      C、12cm,4cm     D、10cm,4cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等腰梯形两底长分别为5cm和11cm,一个底角为60°,则腰长为_   __.

查看答案和解析>>

同步练习册答案