精英家教网 > 初中数学 > 题目详情

一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(数学公式≈1.4,数学公式≈1.7,结果保留整数).

解:∵∠BAC=53°-23°=30°,
∴∠C=23°+22°=45°.
过点B作BD⊥AC,垂足为D,则CD=BD.
∵BC=10,
∴CD=BC•cos45°=10×≈7.0,
∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.
∴AC=AD+CD=11.9+7.0=18.9≈19.
答:小船到码头的距离约为19海里.
分析:根据题意知:在△ABC中,∠BAC=30°,∠C=45°,BC=10海里,求AC长,解斜三角形ABC需转化为解直角三角形求解,因此需作高,作BD⊥AC于D点,分别求AD和CD长.
点评:“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角(30°、45°、60°).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(
2
≈1.4,
3
≈1.7,结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

一艘小船从码头出发,沿北偏东方向航行,航行一段时间到达小岛处后,又沿着北偏西方向航行了10海里到达处,这时从码头测得小船在码头北偏东的方向上,求此时小船与码头之间的距离(,结果保留整数).

 


查看答案和解析>>

科目:初中数学 来源: 题型:

一艘小船从码头出发,沿北偏东方向航行,航行一段时间到达小岛处后,又沿着北偏西方向航行了10海里到达处,这时从码头测得小船在码头北偏东的方向上,求此时小船与码头之间的距离(,结果保留整数).

 


查看答案和解析>>

科目:初中数学 来源:第1章《解直角三角形》中考题集(38):1.5 解直角三角形的应用(解析版) 题型:解答题

一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).

查看答案和解析>>

科目:初中数学 来源:第25章《解直角三角形》中考题集(37):25.3 解直角三角形(解析版) 题型:解答题

一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).

查看答案和解析>>

同步练习册答案