精英家教网 > 初中数学 > 题目详情

【题目】如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接,下列结论一定正确的是(

A.B.C.D.

【答案】D

【解析】

根据旋转的性质得到AC=CDBC=CEAB=DE,故A错误,C错误;

得到∠ACD=BCE,根据三角形的内角和得到∠A=ADC=,∠CBE=,求得∠A=EBC,故D正确;由于∠A+ABC不一定等于90°,于是得到∠ABC+CBE不一定等于90°,故B错误.

∵将ABC绕点C顺时针旋转得到DEC

AC=CDBC=CEAB=DE,故A错误,C错误;

∴∠ACD=BCE

∴∠A=ADC=,∠CBE=

∴∠A=EBC,故D正确;

∵∠A+ABC不一定等于90°

∴∠ABC+CBE不一定等于90°,故B错误

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,过边长为3的等边△ABC的边AB上一点P,作PEACEQBC延长线上一点,当PACQ时,连PQAC边于D,则DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0)、C(2,3)两点,与y轴交于点N,其顶点为D.

(1)求抛物线及直线AC的函数关系式;

(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;

(3)设点M(3,n),求使MN+MD取最小值时n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,BD是它的一条对角线,过A、C两点作AEBD,CFBD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。

(1求证:四边形CMAN是平行四边形。

(2已知DE=4,FN=3,求BN的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD中,对角线BDAC平分,那么再加上下述中的条件( 可以得到结论: “四边形ABCD是平行四边形

A.AB=CD B.BAD=BCDC.ABC=ADC D.AC= BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DEABEDFACF,若BDCDBECF

1)求证:AD平分∠BAC

2)写出AB+ACAE之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC是等边三角形,点DBC边上,点EAB的延长线上,将DED点顺时针旋转120°得到DF

1)如图1,若点F恰好落在AC边上,求证:点DBC的中点;

2)如图2,在(1)的条件下,若=45°,连接AD,求证:

3)如图3,若,连CF,当CF取最小值时,直接写出的值.

查看答案和解析>>

同步练习册答案