【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的坐标分别为A(﹣3,0),C(1,0),.
(1)求过点A、B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得以点A、P、Q为顶点的三角形与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.
【答案】(1)直线AB的解析式为y=x+
;(2)符合条件的D(
,0);(3)符合要求的m的值为
或
.
【解析】
(1)根据点A、B的坐标求出AC的长度再根据求出BC的长度 然后即可写出点B的坐标,设过点A,B的直线的函数表达式为y= kx+b,利用待定系数法求解即可得到直线AB的函数表达式;
(2)过点B作BD⊥AB,交x轴于点D,D点为所求,继而求出D点坐标;
(3)在Rt△ABC中,由勾股定理得AB的值,当PQ// BD时,△APQ~△ABD ,解得m的值 ;当PQ⊥AD时,△APQ ~△ADB ,则解得m 的值.
(1)∵A(﹣3,0),C(1,0),
∴AC=4,
∵BC=AC,
∴BC=×4=3,
∴B(1,3),
设直线AB的解析式为y=kx+b,
∴,
∴,
∴直线AB的解析式为y=x+
;
(2)若△ADB与△ABC相似,
过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,
此时 =
,即AB2=ACAD.
∵∠ACB=90°,AC=4,BC=3,
∴AB=5,
∴25=4AD,
∴AD=,
∴OD=AD﹣AO=﹣3=
,
∴点D的坐标为( ,0).
即:符合条件的D( ,0).
(3)∵AP=DQ=m,
∴AQ=AD﹣QD=﹣m.
Ⅰ、若△APQ∽△ABD,如图2,
则有 =
,
∴APAD=ABAQ,
∴m=5(
﹣m),
解得m=;
Ⅱ、若△APQ∽△ADB,如图3,
则有 =
,
∴APAB=ADAQ,
∴5m=(
﹣m),
解得:m=,
综上所述:符合要求的m的值为 或
.
科目:初中数学 来源: 题型:
【题目】如图1,将一块含有角的三角板放置在一条直线上,
边与直线
重合,
边的垂直平分线与边
分别交于
两点,连接
.
(1) 是 三角形;
(2)直线上有一动点
(不与点
重合) ,连接
并把
绕点
顺时针旋转
到
,连接
.当点
在图2所示的位置时,证明
.我们可以用
来证明
,从而得到
.当点
移动到图3所示的位置时,结论是否依然成立?若成立,请你写出证明过程;若不成立,请你说明理由.
(3)当点在
边上移动时(不与点
重合),
周长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李先生参加了清华同方电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为万元,交了首付之后每月付款
元,
月结清余款.
与
的函数关系如图所示,试根据图象提供的信息回答下列问题.
确定
与
的函数关系式,并求出首付款的数目;
如打算每月付款不超过
元,李先生至少几个月才能结清余款?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料:
问题:如图,在正方形和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形是矩形;
(2)与
的夹角为________度时,四边形
是正方形.
理由:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D.
cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(5,3),B(6,5),C(4,6).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)将△A1B1C1向左平移6个单位,再向上平移5个单位,画出平移后得到的△A2B2C2,并写出点B2的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com