精英家教网 > 初中数学 > 题目详情
如图y=-6x+6与坐标轴交于A、B两点,△ABC为等腰直角三角形,双曲线y=
k
x
(x<0)
过C点,则k的值是______.
∵直线y=-6x+6与坐标轴交于A、B两点,
∴A(1,0),B(0,6),
设C(x,y),
∵△ABC为等腰直角三角形,
∴AC=BC,即(1-x)2+y2=x2+(y-6)2,①,
过点C作CD⊥x轴于点D,
∵CD2+AD2=AC2,2AC2=AB2,即y2+(x-1)2=AC2,2AC2=37,
∴2y2+2(x-1)2=37②,
①②联立得,
(1-x)2+y2=x2+(6-y)2
2y2+2(x-1)2=37

解得y=
7
2
或y=
5
2

由①得,x=6y-
35
2

当y=
7
2
时,x=6×
7
2
-
35
2
=
7
6
(舍去);
当y=
5
2
时,x=6×
5
2
-
35
2
=-
5
2

∴C(-
5
2
5
2
),
∵点C在反比例函数y=
k
x
上,
∴k=(-
5
2
)×
5
2
=-
25
4

故答案为:-
25
4

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,在平面直角坐标系中,反比例函数y=
k
x
(k≠0)的图象与一次函数y=x+b的图象交于A(-1,b-1)、B(-5,b-5)两点.
(1)求反比例函数与一次函数的解析式;
(2)设抛物线y=-x2+b′x+c(c>0)的顶点P在直线AB上,且PA:PB=1:3,求抛物线的解析式;
(3)把以上函数图象同步向右平移,使直线AB与两坐标轴所围成的三角形的面积等于2,求平移后的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知点A在反比例函数的图象上,AB⊥x轴于点B,点C(0,1),若△ABC的面积是3,则反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y=-x+b与双曲线y=-
1
x
(x<0)交于点A,与x轴交于点B,则OA2-OB2=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,△OBA△DOC,边OA、OC都在x轴的正半轴上,点B的坐标为(6,8),∠BAO=∠OCD=90°,OD=5.反比例函数y=
k
x
(x>0)
的图象经过点D,交AB边于点E.
(1)求k的值.
(2)求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

数学家帕普斯借助函数给出一种“三等分锐角”的方法,步骤如下:
①将锐角∠AOB置于平面直角坐标系中,其中以点O为坐标原点,边OB在x轴上;
②边OA与函数y=
1
x
(x>0)
的图象交于点P,以P为圆心,2倍OP的长为半径作弧,在∠AOB内部交函数y=
1
x
(x>0)
的图象于点R;
③过点P作x轴的平行线,过点R作y轴的平行线,两直线相交于点M,连结OM.则∠MOB=
1
3
∠AOB.
请根据以上材料,完成下列问题:

(1)应用上述方法在图1中画出∠AOB的三等分线OM;
(2)设P(a,
1
a
),R(b,
1
b
)
,求直线OM对应的函数表达式(用含a,b的代数式表示);
(3)证明:∠MOB=
1
3
∠AOB;
(4)应用上述方法,请尝试将图2所示的钝角三等分.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=
k
x
(k<0)的图象上,则k等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m、n)是函数y=
k
x
(k>0,x>0)图象上的一个动点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设两个四边形OEPF和OABC不重合部分的面积之和为S.
(1)求B点坐标和k的值;
(2)当S=
9
2
时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

为了调查某一路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:

那么这一个星期在该时段通过该路口的汽车平均每天为______辆.

查看答案和解析>>

同步练习册答案