精英家教网 > 初中数学 > 题目详情
(2010•绍兴)自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

【答案】分析:(1)假设存在符合条件的Q点,由于PE⊥PC,且四边形ABCD是矩形,易证得△APE∽△DCP,可得AP•PD=AE•CD,同理可通过△AQE∽△DCQ得到AQ•QD=AE•DC,则AP•PD=AQ•QD,分别用PD、QD表示出AP、AQ,将所得等式进行适当变形即可求得AP、AQ的数量关系.
(2)由于BE的最大值为AB的长即2,因此只需求得BE的最小值即可;设AP=x,AE=y,在(1)题中已经证得AP•PD=AE•CD,用x、y表示出其中的线段,即可得到关于x、y的函数关系式,根据函数的性质即可求得y的最大值,由此可求得BE的最小值,即可得到BE的取值范围.
解答:解:(1)假设存在这样的点Q;
∵PE⊥PC,
∴∠APE+∠DPC=90°,
∵∠D=90°,
∴∠DPC+∠DCP=90°,
∴∠APE=∠DCP,
又∵∠A=∠D=90°,
∴△APE∽△DCP,
=
∴AP•DP=AE•DC;
同理可得AQ•DQ=AE•DC;
∴AQ•DQ=AP•DP,即AQ•(3-AQ)=AP•(3-AP),
∴3AQ-AQ2=3AP-AP2
∴AP2-AQ2=3AP-3AQ,
∴(AP+AQ)(AP-AQ)=3(AP-AQ);
∵AP≠AQ,
∴AP+AQ=3(2分)
∵AP≠AQ,
∴AP≠,即P不能是AD的中点,
∴当P是AD的中点时,满足条件的Q点不存在.
当P不是AD的中点时,总存在这样的点Q满足条件,此时AP+AQ=3.(1分)

(2)设AP=x,AE=y,由AP•DP=AE•DC可得x(3-x)=2y,
∴y=x(3-x)=-x2+x=-(x-2+
∴当x=(在0<x<3范围内)时,y最大值=
而此时BE最小为
又∵E在AB上运动,且AB=2,
∴BE的取值范围是≤BE<2.(2分)
点评:此题主要考查的是矩形的性质、相似三角形的判定和性质以及二次函数最值的应用;(1)题中,通过两步相似得到与所求相关的乘积式,并能正确地进行化简变形是解决此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《四边形》(07)(解析版) 题型:解答题

(2010•绍兴)自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《有理数》(04)(解析版) 题型:选择题

(2010•绍兴)自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是( )

A.1.49×106
B.0.149×108
C.14.9×107
D.1.49×107

查看答案和解析>>

科目:初中数学 来源:2010年浙江省绍兴市中考数学试卷(解析版) 题型:选择题

(2010•绍兴)自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是( )

A.1.49×106
B.0.149×108
C.14.9×107
D.1.49×107

查看答案和解析>>

科目:初中数学 来源:2010年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2010•绍兴)自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

查看答案和解析>>

同步练习册答案