精英家教网 > 初中数学 > 题目详情
7.先化简,再求值:$\frac{4}{{a}^{2}-4}$+$\frac{1}{2+a}$,其中a=-5.

分析 先化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.

解答 解:$\frac{4}{{a}^{2}-4}$+$\frac{1}{2+a}$
=$\frac{4}{(a+2)(a-2)}+\frac{1}{a+2}$
=$\frac{4+a-2}{(a+2)(a-2)}$
=$\frac{a+2}{(a+2)(a-2)}$
=$\frac{1}{a-2}$,
当a=-5时,原式=$\frac{1}{-5-2}=-\frac{1}{7}$.

点评 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.已知反比例函数y=$\frac{5-m}{x}$(m为常数)的图象经过点A(1,6).
(1)求m的值;
(2)如图,过点A作直线AC与函数y=$\frac{5-m}{x}$的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.一项工程,甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工程所需时间为(  )
A.$\frac{ab}{a+b}$小时B.$\frac{a+b}{ab}$小时C.a+b小时D.$\frac{1}{a+b}$小时

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形,如矩形是等对角线四边形.
(1)如果四边形为等对角线四边形,那么顺次连接四边形各边中点得到的四边形是菱形;
(2)如图1,已知四边形ABCD中,AC,BD为对角线,∠ABC=∠DCB=60°,AB+CD=BC,求证:四边形ABCD是等对角线四边形;
(3)如图2,AC,BD是等对角线四边形ABCD的两条对角线,AB<CD,BD平分∠ABC,∠BDC=90°,CD=$\sqrt{5}$,tan∠DBC=$\frac{1}{2}$,求tan∠ACB的值

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知,如图,∠ABC=∠BCD=90°,AC=15,sinA=$\frac{4}{5}$,BD=20,求∠D的三个三角函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示的玩具,其主要部分是由六个全等的菱形组成,菱形边长为3cm,现将玩具尾部点B1固定,当这组菱形形状发生变化时,玩具的头部B1沿射线移动.
(1)当∠A1B1C1=120°时,求B1,B7两点间的距离.
(2)当∠A1B1C1由120°变为60°时,点B1移动了多少cm?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,点A在函数y=$\frac{4}{x}$(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=$\frac{1}{x}$图象于点B,C,直线BC与坐标轴的交点为D,E.
(1)当点C的横坐标为1时,求点B的坐标;
(2)试问:当点A在函数y=$\frac{4}{x}$(x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.
(3)试说明:当点A在函数y=$\frac{4}{x}$(x>0)图象上运动时,线段BD与CE的长始终相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,二次函数y=a(x2-4mx-12m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,-6),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
(1)用含m的代数式表示a;
(2)求证:$\frac{AD}{AE}$为定值;
(3)设该二次函数图象的顶点为F,连接FC并延长交x轴的负半轴于点G,判断以线段GF、AD、AE的长度为三边长的三角形的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{2x+3<9-x}\\{2x-5>10-3x}\end{array}\right.$.

查看答案和解析>>

同步练习册答案