精英家教网 > 初中数学 > 题目详情
若x1,x2是关于x的方程(x-2)(x-3)=p的两个正实数根.
(1)求出p的取值范围.
(2)如果x1,x2是直角三角形的两直角边的长,那么p取多少时,此时直角三角形的面积最大,最大面积为多少?
分析:(1)将原方程式化为一元二次方程的一般形式,然后根据根与系数的关系求解;
(2)根据题意,列出求直角三角形的面积代数式,然后利用(1)的p的取值范围来确定此时直角三角形的最大面积.
解答:解:(1)由原方程,得
x2-5x+6-p=0,
∵x1,x2是关于x的方程(x-2)(x-3)=p的两个正实数根,
∴x1•x2=6-p>0,即p<6①
△=25-4×(6-p)≥0,解得p≥-
1
4

由①②,得
-
1
4
≤p<6;

(2)设直角三角形的面积是S.
∵x1,x2是直角三角形的两直角边的长,
∴S=
1
2
x1•x2
=
1
2
×(6-p)
当p取最小值-
1
4
时,S最大=
1
2
×【6-(-
1
4
)】
=
25
8
,即S最大=
25
8
点评:本题主要考查了一元二次方程根的判别式及根与系数的关系.在解题时,注意题中的已知条件:x1,x2是两个正实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、若x1、x2是关于x的方程x2+bx-3b=0的两个根,且x12+x22=7.那么b的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1和x2是关于x的方程x2-(a-1)x-b2+b-1=0的两个相等的实数根,则x1=x2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1,x2是关于x的方程x2-kx+5(k-5)=0的两个正实数根,且满足2x1+x2=7,则实数k的范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,再填空解答:
方程x2-3x-4=0的根为x1=-1,x2=4,x1+x2=3,x1x2=-4;
方程3x2+10x+8=0的根为x1=-2,x2=-
4
3
x1+x2=-
10
3
x1x2=
8
3

(1)方程2x2+x-3=0的根是x1=
-
3
2
-
3
2
,x2=
1
1
,x1+x2=
-
1
2
-
1
2
,x1x2=
-
3
2
-
3
2

(2)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

(3)当你轻松解决以上问题时,试一试下面这个问题:甲、乙两同学解方程x2+px+q=0时,甲看错了一次项系数,得根2和7,乙看错了常数项,得根1和-10,则原方程中的p、q到底是多少?你能写出原来的方程吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1和x2是关于x的方程x2-(a-1)x-
14
b2+b-1=0的两个相等的实数根,则x1=x2=
0
0

查看答案和解析>>

同步练习册答案