精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=AC,BDAC边上的中线,AEBC,垂足为点E,交BDF,cosABC=,AB=13.

(1)求AE的长;

(2)求tanDBC的值.

【答案】(1)见解析;(2)见解析.

【解析】

(1)根据AE⊥BC,垂足为点E,交BDF,cos∠ABC= ,AB=13,可以求得BE的长,从而可以求得AE的长;
(2)根据在△ABC中,AB=AC,BDAC边上的中线,AE⊥BC,可知AE、BD为△ABC的中线,从而可以利用重心定理得到EF的长,由AE⊥BC,从而可以得到tan∠DBC的值.

解:(1)∵AE⊥BC,
∴∠AEB=90°.
∵cosABC=,AB=13,
∴BE=5.
∵在Rt△BEA中,BE2+AE2=AB2
∴AE= =12.
(2)∵AB=AC,AE⊥BC,
∴AEBC边上的中线.
又∵BDAC边上的中线,
∴F是△ABC的重心.
∵AE=12,
∴EF=AE=4.
∵Rt△BEF中,BE=5,EF=4,
∴tan∠DBC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】建立适当的坐标系,运用函数知识解决下面的问题:

如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF3米时,水面宽AB6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2米,此时水位上升了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点AACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

(1)求抛物线的解析式;

(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;

(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在中,.点从点开始沿边向点的速度移动,同时点从点开始沿边向点的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为秒,

求几秒后,的面积等于

求几秒后,的长度等于

运动过程中,的面积能否等于?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=,则△ABC的边长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的顶点 轴负半轴上,顶点轴正半轴上,顶点 在第一象限,线段 的长是一元二次方程 的两根,

(1)直接写出点的坐标 点 C 的坐标

(2)若反比例函数的图象经过点,求 的值;

(3)如图过点 轴于点 轴上是否存在点 ,使以 为顶点的三角形与以为顶点的三角形相似?若存在,直接写出满足条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明锻炼健身,从A地匀速步行到B地用时25分钟若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用25分钟

1求返回时A、B两地间的路程;

2若小明从A地步行到B地后,以跑步形式继续前进到C地整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟含第30分钟,步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里测试结果,在整个锻炼过程中小明共消耗904卡路里热量小明从A地到C地共锻炼多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A1B1C1中,A1B14A1C15B1C17.点A2B2C2分别是边B1C1A1C1A1B1的中点;点A3B3C3分别是边B2C2A2C2A2B2的中点;;以此类推,则第2019个三角形的周长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACBAC=),将线段BC绕点B逆时针旋转60°得到线段BD

1)如图1,直接写出ABD的大小(用含的式子表示);

2)如图2BCE=150°ABE=60°,判断ABE的形状并加以证明;

3)在(2)的条件下,连结DE,若DEC=45°,求的值。

查看答案和解析>>

同步练习册答案