精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:在△ABC中,∠C=ABCBEACBDE是正三角形.求∠C的度数.

【答案】75°

【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出即可.

解:∵△BDE是正三角形,

∴∠DBE=60°;

∵在△ABC中,∠C=∠ABC,BE⊥AC,

∴∠C=∠ABC=∠ABE+∠EBC则∠EBC=∠ABC﹣60°=∠C﹣60°,∠BEC=90°;

∴∠EBC+∠C=90°,即∠C﹣60°+∠C=90°

解得∠C=75°.

“点睛”本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,现将一直角三角形PMN放入图中,其中P=90°,PM交AB于点E,PN交CD于点F

(1)当PMN所放位置如图所示时,则PFD与AEM的数量关系为   

(2)当PMN所放位置如图所示时,求证:∠PFD﹣∠AEM=90°;

(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求N的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )

A.5x24x31B.x2yxy20

C.3ab2ab=﹣5abD.2m2+3m35m5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知BADBCE均为等腰直角三角形,∠BAD=BCE=90°,点MDE的中点.过点EAD平行的直线交射线AM于点N

(1)当ABC三点在同一直线上时(如图1),求证:MAN的中点;

(2)将图1中BCE绕点B旋转,当ABE三点在同一直线上时(如图2),求证:CAN为等腰直角三角形;

(3)将图1中BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线AC、BD交于点O,并且∠DAC=60°,∠ADB=15°.点E是AD边上一动点,延长EO交BC于点F.当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是(
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→菱形→平行四边形→矩形→平行四边形
C.平行四边形→矩形→平行四边形→正方形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:x42x+1互为相反数.则:x_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明一家利用国庆八天驾车到某景点旅游,小汽车出发前油箱有油35L,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图像回答下列问题:

(1)小汽车行驶______h后加油,中途加油_______L

(2)求加油前油箱余油量Q与行驶时间t的函数关系式

(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速80km/h,要到达目的地,油箱中的油是否够用?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有(  )

AMBN;AM=BN;BC=ML;④∠ACB=MNL。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商人在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中,该商人( )

A.10B.10C.不赚不赔D.无法确定

查看答案和解析>>

同步练习册答案