精英家教网 > 初中数学 > 题目详情
如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).
(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQ、QB、BA之间的数量关系.
(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明AB:OA=2
3
:3.
(3)在(1)中,若OA=8
2
,OC=8,OP=
2
CQ.以矩形OABC的两边OA、OC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.
①求此抛物线的解析式.
②过线段BP上一动点M(点M与点P、B不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长L与m之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?
分析:(1)要写成三个三角形相似的式子,需要先找出相等的对应角,首先由BC∥OA,确定∠CBP=∠BPA>∠QBP,那么三个相似三角形的一组对应角应该是:∠QBP、∠QPO、∠ABP,显然能得出∠QBP=∠ABP、∠OQP=∠BQP,那么过P作BQ的垂线,根据角平分线定理即可判断出OQ、QB、BA三者之间的数量关系.
(2)同(1),先根据图示确定相似三角形的对应角,然后根据三个三角形的对应顶点写出三角形相似的式子;在△BQP、△BPA中,有公共边BP,可确定两者全等,那么BQ=AB,因此确定出∠CBQ的度数,即可确定AB、BC(OA)的比例关系,那么可以从△OQP、△CQB、△ABP这三个相似三角形入手.
(3)①首先结合(1)的解题过程,确定OP的长,进而得出点P的坐标,再利用待定系数法确定抛物线的解析式;
②首先利用待定系数法求出直线BP的解析式,然后根据直线BP、抛物线的解析式,用点M的横坐标表示出点M、N的纵坐标,两点纵坐标的差即为L的函数表达式,再根据函数的性质进行判断即可.
解答:解:(1)△OPQ和△ABP中,∵∠OPQ+∠APB=90°,且∠APB+∠ABP=90°,
∴∠OPQ=∠ABP;
△BPQ和△ABP中,∵BC∥OA,∴∠APB=∠CBP>∠PBQ,
若两个三角形相似,则:∠PBQ=∠ABP;
∴∠OPQ=∠ABP=∠PBQ
又∵∠O=∠A=∠QPB=90°,
∴△OPQ∽△ABP∽△PBQ.
在△OPQ和△PBQ中,∠OQP=∠PQB,过P作PD⊥BQ于D,则 OQ=QD;
同理,可得:BD=AB,
∴BQ=QD+BD=OQ+AB.

(2)同(1)可确定∠QBP=∠ABP,由图知:∠QPO=∠BPA
∴∠OQP=∠ABP=∠QBP,又∠BQP=∠QOP=∠BAP=90°
∴△OPQ∽△APB∽△QPB.
由(1)的结论知:∠OQP=∠QBC=∠QBP=∠ABP,且∠ABC=90°,
∴∠QBC=30°,则 BQ:CB=2:
3
=2
3
:3;
由△QPB∽△APB,且BP=BP,所以△QPB≌△APB,得:AB=BQ;
∴AB:BC=2
3
:3,即 AB:OA=2
3
:3.

(3)①由(1)的解答过程知:若△OPQ与△PAB和△QPB相似,则必须满足的条件是∠QPB=90゜;
此时∠OQP=∠BQP、∠QBP=∠ABP,由(1)题图可知:OP=AP=PD;
∴OP=AP=
1
2
OA=4
2
,即 P(4
2
,0);
设抛物线的解析式为:y=a(x-4
2
2,代入点B(8
2
,8),得:
a(8
2
-4
2
2=8,解得 a=
1
4

∴抛物线的解析式为:y=
1
4
(x-4
2
2=
1
4
x2-2
2
x+8.
②设直线BP的解析式为:y=kx+b,代入B(8
2
,8)、P(4
2
,0),得:
8
2
k+b=8
4
2
k+b=0
,解得
k=
2
b=-8

∴直线BP:y=
2
x-8.
已知点M的横坐标为m,则 M(m,
2
m-8)、N(m,
1
4
m2-2
2
m+8),则有:
MN的长:L=
2
m-8-(
1
4
m2-2
2
m+8)=-
1
4
m2+3
2
m-16(4
2
<m<8
2
)(如右图)
配方,得:L=-
1
4
(m2-12
2
m+72)+2=-
1
4
(m-6
2
2+2,
∴当m取6
2
时,L有最大值,且最大值为 2.
点评:此题主要考查的是相似三角形以及二次函数的相关知识,题目的难度逐题递进,前面的题目为后面的解答过程提供了很好的铺垫,这样也降低了解题的难度.在解题时,一定要注意合理利用图形的辅助作用.另外,在求函数解析式和画函数图象时,要注意自变量的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:正△OAB的面积为4
3
,双曲线y=
k
x
经过点B,点P(m,n)(m>0)在双曲线y=
k
x
上,PC⊥x轴于点C,PD⊥y轴于点D,设矩形OCPD与正△OAB不重叠部分的面积为S.
(1)求点B的坐标及k的值;
(2)求m=1和m=3时,S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延精英家教网长线交于点E.
(1)证明:△OAB∽△EDA;
(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)

如图,已知OA⊥OB,OA=8,OB=6,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.

(1)求证:△OAB∽△EDA;                               

(2)当a为何值时,△OAB与△EDA全等?并求出此时点C到OE的距离.

 

查看答案和解析>>

科目:初中数学 来源:2011届河北省唐山路南数学三模试卷 题型:解答题

(本题满分10分)

如图,已知OA⊥OB,OA=8,OB=6,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.
(1)求证:△OAB∽△EDA;                               
(2)当a为何值时,△OAB与△EDA全等?并求出此时点C到OE的距离.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省启东市九年级中考适应性考试(一模)数学试卷(解析版) 题型:解答题

如图,已知OAOBOA=4,OB=3,以AB为边作矩形ABCD,使AD,过点DDE垂直OA的延长线且交于点E.(1)求证:△OAB∽△EDA

(2)当为何值时,△OAB与△EDA全等?请说明理由;并求出此时BD两点的距离.

 

查看答案和解析>>

同步练习册答案