【题目】如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=( )
A.
B.
C.
D.
【答案】A
【解析】解:作G′I⊥CD于I,G′R⊥BC于R,E′H⊥BC交BC的延长线于H.连接RF′.则四边形RCIG′是正方形. ∵∠DG′F′=∠IGR=90°,
∴∠DG′I=∠RG′F′,
在△G′ID和△G′RF中,
,
∴△G′ID≌△G′RF,
∴∠G′ID=∠G′RF′=90°,
∴点F在线段BC上,
在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,
∴E′H= E′F′=1,F′H= ,
易证△RG′F′≌△HF′E′,
∴RF′=E′H,RG′RC=F′H,
∴CH=RF′=E′H,
∴CE′= ,
∵RG′=HF′= ,
∴CG′= RG′= ,
∴CE′+CG′= + .
故选A.
【考点精析】本题主要考查了正方形的性质和旋转的性质的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相交于点M,与x轴相交于点N.点P是线段MN上的一动点,过点P作PE⊥CP交x轴于点E.
(1)直接写出抛物线的顶点M的坐标是 .
(2)当点E与点O(原点)重合时,求点P的坐标.
(3)点P从M运动到N的过程中,求动点E的运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在解方程组时,我们可以先①+②,得再②-①,得最后重新组成方程组,这种解二元一次方程组的解法我们称为二元一次方程组的轮换对称解法.
(1)用轮换对称解法解方程组,得_____________________________;
(2)如图,小强和小红一起搭积木,小强所搭的“小塔”高度为32cm,小红所搭的“小树”高度为3lcm,设每块A型积木的高为每块B型积木的高为求与的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2,4,6,8,...,顶点依此用A1,A2,A3,A4......表示,则顶点A55的坐标是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】修建某一建筑时,若请甲、乙两个工程队同时施工,5天可以完成,需付两队费用共3 500元;若先请甲队单独做3天,再请乙队单独做6天可以完成,需付两队费用共3 300元.问:
(1)甲、乙两队每天的费用各为多少?
(2)若单独请某队完成工程,则单独请哪队施工费用较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知;直线AB∥CD,直线MN分别与AB、CD交于点E、F.
(1)如图1,∠BEF和∠EFD的平分线交于点G.求∠G的度数;
(2)如图2,EI和EK为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点I和K,猜想∠FIE和∠K的关系,并证明;
(3)如图3,点Q为线段EF(端点除外)上的一个动点,过点Q作EF的垂线交AB于R,交CD于J,∠AEF、∠CJR的平分线相交于P,问∠EPJ的度数是否会发生变化?若不发生变化,求出∠EPJ的度数;若会发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数,它的图象犹如老师的打钩,因此人们称它为对钩函数(的一支).下表是与的几组对应值:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
请你根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行探究.
(1)如图,在平面直角坐标系中,已描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;
(2)请根据图象写出该函数的一条性质: .
(3)当时,的取值范围为 ,则的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com