精英家教网 > 初中数学 > 题目详情
14.(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积;
(2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

分析 (1)过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=2,DF=4.根据勾股定理可求CD2得正方形的面积;
(2)作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.

解答 解:(1)如图1,作EF⊥l2,交l1于E点,交l4于F点.
∵l1∥l2∥l3∥l4,EF⊥l2
∴EF⊥l1,EF⊥l4
即∠AED=∠DFC=90°.
∵四边形ABCD为正方形,
∴∠ADC=90°.
∴∠ADE+∠CDF=90°.
又∵∠ADE+∠DAE=90°,
∴∠CDF=∠DAE.
∵AD=CD,
在△ADE和△DCF,
$\left\{\begin{array}{l}{∠AED=∠DFC=90°}\\{∠CDF=∠DAE}\\{AD=CD}\end{array}\right.$,
∴△ADE≌△DCF(AAS),
∴CF=DE=2.
∵DF=4,
∴CD2=22+42=20,
即正方形ABCD的面积为20cm2

(2)如图2,作BE⊥l于点E,DF⊥l于点F.
∵∠1+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,
∴∠ADF=∠1=36°,
根据题意,得BE=36mm,DF=72mm.
在Rt△ABE中,sin∠1=$\frac{BE}{AB}$,
∴AB=$\frac{BE}{sin36°}$=60mm,
在Rt△ADF中,cos∠ADF=$\frac{DF}{AD}$,
∴AD=$\frac{DF}{cos36°}$mm=90mm.
∴矩形ABCD的周长=2(60+90)=300mm.

点评 本题考查了正方形的性质、矩形的性质、全等三角形的判定与性质以及直角三角形中三角函数的应用,锐角三角函数值的计算等知识,根据平行线之间的距离构造全等的直角三角形是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.下面说法正确的是(  )
A.${(\frac{π}{2})}^{0}$是无理数B.$\frac{\sqrt{3}}{2}$是有理数C.$\frac{7}{5}$是无理数D.$\root{3}{-27}$是有理数

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.以下四个命题是真命题的是(  )
A.任意三点可以确定一个圆
B.菱形对角线相等
C.直角三角形斜边上的中线等于斜边的一半
D.“打开电视机,中央一套正在直播巴西世界杯足球赛”是必然事件

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.问题提出
把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.
把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢?
初步认识
如图(1),四边形ABCD中,延长BC到M,则边AB、CD分别在直线BM的两旁,所以四边形ABCD就是一个凹四边形.请你画一个凹五边形.(不要说明)
性质探究
请你完成凹四边形一个性质的证明:
如图(2),在凹四边形ABCD中,求证:∠BCD=∠A+∠B+∠D.
类比学习
我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH是平行四边形.当四边形ABCD满足一定条件时,四边形EFGH还可能是矩形、菱形或正方形.
如图(4),在凹四边形ABCD中,AB=AD,CB=CD,E、F、G、H分别是边AB、BC、CD、DA的中点,请判断四边形EFGH的形状,并证明你的结论.
拓展延伸
如图(5),在凹四边形ABCD的边上求作一点P,使得∠BPD=∠A+∠B+∠D.(不写作法、证明,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.小军家的玩具店进了一箱除颜色外都相同的塑料球共1000个,小军将箱中的球搅匀后,随机摸出一个球记下颜色,放回箱中;搅匀后再随机摸出一个球记下颜色,放回箱中;…多次重复上述实验后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是200个.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点是B,已知∠A=30°,则∠C等于(  )
A.40°B.30°C.60°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是(  )
A.0<k<4B.-3<k<1C.k<-3或k>1D.k<4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在北京,乘坐地铁是市民出行时经常采用的一种交通方式,据调查,新票改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了一下统计表以及统计图.

根据以上信息解答下列问题:
(1)补全扇形图;
(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是2号线,调价后里程x(千米)在52<x≤72范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到22.2万人次(精确到0.1)
(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出30元.(不考虑使用一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知5+2$\sqrt{3}$的小数部分是m,6-2$\sqrt{3}$小数部分是n,则m+n=1.

查看答案和解析>>

同步练习册答案