精英家教网 > 初中数学 > 题目详情

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

【答案】(1)证明见解析;AB10 (2)在(1)的条件下,点M,N在移动的过程中,线段EF的长度不变,它的长度恒为2.

【解析】试题分析:(1)先证出C=D=90°,再根据1+3=90°1+2=90°,得出2=3,即可证出OCP∽△PDA;根据OCPPDA的面积比为14,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;

2)作MQAN,交PB于点Q,求出MP=MQBN=QM,得出MP=MQ,根据MEPQ,得出EQ=PQ,根据QMF=BNF,证出MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变.

试题解析:(1)如图1四边形ABCD是矩形,∴∠C=D=90°∴∠1+3=90°由折叠可得APO=B=90°∴∠1+2=90°∴∠2=3,又∵∠D=C∴△OCP∽△PDA∵△OCPPDA的面积比为14=CP=AD=4,设OP=x,则CO=8﹣x,在RtPCO中,C=90°,由勾股定理得 : ,解得:x=5CD=AB=AP=2OP=10CD的长为10

2)作MQAN,交PB于点Q,如图2AP=ABMQAN∴∠APB=ABP=MQPMP=MQBN=PMBN=QMMP=MQMEPQEQ=PQMQAN∴∠QMF=BNF,在MFQNFB中,∵∠QFM=NFBQMF=BNFMQ=BN∴△MFQ≌△NFBAAS),QF=QBEF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4BC=8C=90°PB==EF=PB=在(1)的条件下,当点MN在移动过程中,线段EF的长度不变,它的长度为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1ABC是等腰直角三角形,四边形ADEF是正方形,点DF分别在ABAC边上,此时BD=CFBDCF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2BD=CF成立吗?若成立,请证明;若不成立,请说明理由.

(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BDCF于点G.

①求证:BDCF ②当AB=4AD=时,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A'B'C'是由ABC经过平移得到的,它们的顶点在平面直角坐标系中的坐标如下表所示:

(1)观察表中各对应点坐标的变化,并填空:

a= , b= ,c= ;

(2)在平面直角坐标系中画出ABC及平移后的A'B'C';(3)A'B'C'的面积是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+4的图象分别与x轴,y轴的正半轴交于点EF,一次函数ykx4的图象与直线EF交于点Am2),且交于x轴于点P

1)求m的值及点EF的坐标;

2)求APE的面积;

3)若B点是x轴上的动点,问在直线EF上,是否存在点QQA不重合),使BEQAPE全等?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)

【答案】钢缆AC的长度为1 000米.

【解析】试题分析:过点AAE⊥CC′于点E,交BB′于点F,过点BBD⊥CC′于点D,分别求出AECE,利用勾股定理求解AC即可.

试题解析:过点AAE⊥CC′于点E,交BB′于点F,过点BBD⊥CC′于点D

△AFB△BDC△AEC都是直角三角形,四边形AA′B′FBB′C′DBFED都是矩形,

∴BF=BB′-B′F=BB′-AA′=310-110=200

CD=CC′-C′D=CC′-BB′=710-310=400

∵i1=12i2=11

∴AF=2BF=400BD=CD=400

∵EF=BD=400DE=BF=200

∴AE=AF+EF=800CE=CD+DE=600

RtAEC中,AC=(米).

答:钢缆AC的长度是1000米.

考点:解直角三角形的应用-坡度坡角问题.

型】解答
束】
24

【题目】如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.

(1)求证:AC平分∠DAB;

(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;

(3)如图②,连接OD交AC于点G,若,求sinE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行2000米到B点处测得正前方C点处的俯角为45°.求海底C点处距离海面DF的深度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

如图1,四边形ABCD是正方形,MBC边上的一点,ECD边的中点,AE平分∠DAM

【探究展示】

1)证明:AM=AD+MC

2AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.

【拓展延伸】

3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习利用三角函数测高后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:

1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°

2)在测点C与山脚B之间的D处安置测倾器(CDB在同一直线上,且CD之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°

3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;

已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(1.732,结果保留整数)

查看答案和解析>>

同步练习册答案