精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC.
(1)求点B的坐标;
(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,过点P作PM∥CB交线段AB于点M,过点M作MR⊥OC,垂足为R,线精英家教网段MR分别交直线PH、OB于点E、G,点F为线段PM的中点,连接EF,当t为何值时,
EF
EG
=
5
2
分析:(1)过点B作BN⊥OC,则四边形ABNO是矩形,BN=AO=8,AB=ON,由勾股定理可求得NB的长;
(2)可证△BON∽△POH,有
BO
PO
=
ON
OH
=
BN
PH
,由题意知OP=10-5t,OH=6-3tPH=8-4t,BH=OB-OH=10-(6-3t)=3t+4,从而求得S的表达式,由于OC=10,故0≤t<2;
(3)分两种情况分析:①当点G在点E上方时,如图2过点B作BN′⊥OC,垂足为N′,先得到四边形BMPC是平行四边形,有PM=BC=4
5
,BM=PC=5t,证得∠OPD=∠ODP,由同角的余角相等得到∠RMP=∠DPH,有EM=EP,由于点F为PM的中点,则EF⊥PM,得到∠EMF=∠PMR,∠EFM=∠PRM=90°,有△MEF∽△MPR,有
ME
MP
=
MF
MR
=
EF
PR
,由条件可得ME=5,EF=
5
,根据题意知
EF
EG
=
5
2
,有EG=2,MG=EM-EG=5-2=3,又可证得△MGB∽△N′BO,有
MG
N′B
=
MB
N′O
,得BM=
9
4
,从而求得t的值;②当点G在点E下方时,如图3,同理可得MG=ME+EG=5+2=7,有BM=5t=
21
4
,可得t的值.
解答:精英家教网解:(1)如图1,过点B作BN⊥OC,垂足为N
由题意知OB=OC=10,BN=OA=8
∴ON=
OB2-BN2
=6

∴B(6,8)

(2)如图1,∵∠BON=∠POH,∠ONB=∠OHP=90°
∴△BON∽△POH,
BO
PO
=
ON
OH
=
BN
PH

∵PC=5t,
∴OP=10-5t
∴OH=6-3t,PH=8-4t
∴BH=OB-OH=10-(6-3t)=3t+4,
∴S=
1
2
(3t+4)(8-4t)=-6t2+4t+16(0≤t<2)

(3)①当点G在点E上方时,
精英家教网如图2过点B作BN′⊥OC,垂足为N′
BN′=8,CN′=4
∴CB=
BN2+CN2
=4
5

∵BM∥PC,BC∥PM
∴四边形BMPC是平行四边形
∴PM=BC=4
5
,BM=PC=5t
∵OC=OB,
∴∠OCB=∠OBC
∵PM∥CB,
∴∠OPD=∠OCB,∠ODP=∠OBC
∴∠OPD=∠ODP
∵∠OPD+∠RMP=90°,∠ODP+∠DPH=90°
∴∠RMP=∠DPH
∴EM=EP
∵点F为PM的中点,
∴EF⊥PM
∵∠EFM=∠PRM,∠EMF=∠PMR,
∴△MEF∽△MPR,
ME
MP
=
MF
MR
=
EF
PR
,其中MF=
PM
2
=2
5

MR=8,PR=
PM2-MR2
=4

∴ME=5,EF=
5

EF
EG
=
5
2

∴EG=2
∴MG=EM-EG=5-2=3
∵AB∥OC
∴∠MBG=∠BON′
又∵∠GMB=∠ON′B=90°
∴△MGB∽△N′BO
MG
N′B
=
MB
N′O

∴BM=
9
4
精英家教网
∴5t=
9
4

∴t=
9
20


②当点G在点E下方时,如图3,同理可得MG=ME+EG=5+2=7
∴BM=5t=
21
4

∴t=
21
20

∴当t=
9
20
或t=
21
20
时,
EF
EG
=
5
2
点评:本题主要考查了相似三角形的判定和性质,勾股定理以及平行四边形的性质,平面直角坐标每等知识点,要注意(3)中,要分类讨论,从而得出运动时间t的值.不要忽略掉任何一种情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案