精英家教网 > 初中数学 > 题目详情
6.如图图形中,由∠1=∠2能得到AB∥CD的是(  )
A.B.
C.D.

分析 在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.

解答 解:A、∠1、∠2是同旁内角,由∠1=∠2不能判定AB∥CD;
B、∠1、∠2是内错角,由∠1=∠2能判定AB∥CD;
C、∠1、∠2是内错角,由∠1=∠2能判定AC∥BD,不能判定AB∥CD;
D,∠1、∠2是同旁内角,由∠1=∠2不能判定AB∥CD;
故选B.

点评 本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.下列计算正确的是(  )
A.a3+a2=a5B.(a-b)2=a2-b2C.a6b÷a2=a3bD.(-ab32=a2b6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知AB∥CD,∠1=60°,则∠2=120度,∠3=60度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图①,C地位于A,B两地之间,甲步行直接从C地前往B地;乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍.设出发x min后甲、乙两人离C地的距离分别为y1 m、y2 m,图②中线段OM表示y1与x的函数图象.

(1)甲的速度为80 m/min,乙的速度为200 m/min;
(2)在图②中画出y2与x的函数图象;
(3)求甲乙两人相遇的时间;
(4)在上述过程中,甲乙两人相距的最远距离为960m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,抛物线y=a(x-2)2+h与x轴交于A(6,0)和B两点,与y轴交于点C(0,2$\sqrt{3}$),点M从点B出发以每秒2个单位的速度向点A运动,设运动时间为t秒,过点M作直线MP∥BC与线段AC交于点P,再以线段PM为斜边作Rt△PMN,点N在x轴上.

(1)求抛物线的表达式;
(2)求Rt△PMN的斜边PM的长(用含有t的代数式表示),并求当Rt△PMN的顶点P与AC的中点D重合时t的值;
(3)在(2)的条件下,在△AOC的内部作矩形DEOF,点E,F分别在x轴和y轴上,设Rt△PMN和矩形DEOF重叠部分的面积为S,当运动时间在0≤t≤2范围内时,求出S与t之间的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算$\frac{{\sqrt{5}•\sqrt{15}}}{{\sqrt{3}}}$=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1、x2,其中-2<x1<-1,0<x2<1,下列结论:
①4a-2b+c<0;②2a-b<0;③abc<0;④b2+8a<4ac.
其中正确的结论有①②.(填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的(  )
A.abc>0
B.9a+3b+c>0
C.a+b≥m(am+b)(m≠1的实数)
D.方程ax2+bx+c=2有两个不相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.一个容积为400升的水箱,安装有A、B两个注水管,注水过程中A水管始终打开,B水管8分钟后打开,两水管的注水速度均为定值.当水箱注满时,两水管自动停止注水,注水过程中水箱中水量y(升)与A水管注水时间时间x(分)之间的函数图象如图所示.
(1)分别求A、B两水管的注水速度.
(2)当8≤x≤16时,求y与x之间的函数关系式.
(3)当两水管的注水量相同时,直接写出x的值.

查看答案和解析>>

同步练习册答案