精英家教网 > 初中数学 > 题目详情
如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.
(1)△QCP是等边三角形,
证明:连接OQ,则CQ⊥OQ,
∵PQ=PO,∠QPC=60°,
∴∠POQ=∠PQO=30°,
∴∠C=90°-30°=60°,
∴∠CQP=∠C=∠QPC=60°,
∴△QPC是等边三角形.

(2)连接OQ,
∵∠PQO=∠POQ=45°,
∴∠CQP和∠C都是45°角的余角,
∴∠CQP=∠C=45°,
∴△QCP是等腰直角三角形.

(3)∵PQ=PO,
∴∠PQO=∠POQ,
∴∠CQP=∠PCQ,
∴△CPQ是等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=
6
,则线段BC的长度等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交⊙O于点D.
(1)BD是⊙O的切线吗?为什么?
(2)若AC=10,求线段BC的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA为⊙O的切线,A为切点,割线PBC过圆心O,∠ACP=30°,OC=1cm,则PA的长为(  )
A.
2
cm
B.
3
cm
C.2cmD.3cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,从⊙O外一点P引圆的切线PA和PB,切点分别是A和B,如果∠APB=70°,那么这两条切线所夹劣弧AB的度数是(  )
A.110°B.70°C.55°D.35°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,半径OC⊥AB,D为AB延长线上一点,过D作⊙O的切线,E为切点,连接CE交AB于点F.
(1)求证:DE=DF;
(2)连AE,若OF=1,BF=3,求DE长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为______.

查看答案和解析>>

同步练习册答案