分析 过A作AD⊥BC于D,连接OB,根据垂径定理求出BD,勾股定理求出OB,再根据勾股定理计算即可.
解答 解:过A作AD⊥BC于D,则外心O在AD上,连接OB,
由垂径定理得,BD=$\frac{1}{2}$BC=3,
在Rt△OBD中,OD=4,BD=3,
∴OB=$\sqrt{O{D}^{2}+B{D}^{2}}$=5,
即△ABC外接圆的半径为5,
则AD=4+5=9,
在Rt△ABD中,AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=3$\sqrt{10}$.
点评 本题考查的是三角形的外接圆和外心,掌握垂径定理、三角形的外心的定义、等腰三角形的性质、勾股定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | t≥5 | B. | t>5 | C. | t<5 | D. | t≤5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com