在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.
(1)求k的值;
(2)判断△QOC与△POD的面积是否相等,并说明理由.
(1)k=12。
(2)相等。理由见解析
解析试题分析:(1)根据点B与点A关于y轴对称,求出B点坐标,再代入反比例函数解析式解可求出k的值;
(2)设点P的坐标为(m,n),点P在反比例函数(x>0)的图象上,求出S△POD,根据AB∥x轴,OC=3,BC=4,点Q在线段AB上,求出S△QOC,二者比较即可。
解:(1)∵点B与点A关于y轴对称,A(﹣3,4),
∴点B的坐标为(3,4)。
∵反比例函数(x>0)的图象经过点B,
∴,解得k=12。
(2)相等。理由如下:
设点P的坐标为(m,n),其中m>0,n>0,
∵点P在反比例函数(x>0)的图象上,
∴,即mn=12。∴S△POD=OD•PD=mn=×12=6。
∵A(﹣3,4),B(3,4),∴AB∥x轴,OC=3,BC=4。
∵点Q在线段AB上,∴S△QOC=OC•BC=×3×4=6。
∴S△QOC=S△POD。
科目:初中数学 来源: 题型:解答题
如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).
(1)求一次函数的表达式;
(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年浙江义乌12分)如图1,已知(x>)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.
(1)如图2,连结BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年四川广安6分)已知反比例函数(k≠0)和一次函数y=x﹣6.
(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.
(2)当k满足什么条件时,两函数的图象没有交点?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,一次函数y=2x﹣2的图象与x轴、y轴分别相交于B、A两点,与反比例函数的图象在第一象限内的交点为M(3,m).
(1)求反比例函数的解析式;
(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:计算题
为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2
【小题1】求被调查的班级的学生人数
【小题2】求喜欢“乒乓球”的学生人数,并在图1中将“乒乓球”部分的图形补充完整;
【小题3】若该校共有2000名学生,请估计喜欢“足球”的学生人数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com