精英家教网 > 初中数学 > 题目详情
等腰三角形一腰上的高与另一腰的夹角为360,则该等腰三角形的底角的度数为       
63°或27°.

试题分析:等腰三角形分锐角和钝角两种情况,求出每种情况的顶角的度数,再利用等边对等角的性质(两底角相等)和三角形的内角和定理,即可求出底角的度数:
有两种情况;
(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,
∵∠ABD=36°,∴∠A=90°-36°=54°.
∵AB=AC,∴∠ABC=∠C=×(180°-54°)=63°.

(2)如图 当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,
∵∠HFE=36°,∴∠HEF=90°-36°=54°,∴∠FEG=180°-54°=126°.
∵EF=EG,∴∠EFG=∠G=×(180°-126°),=27°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1)。
(1)求证:AM=AN;
(2)设BP=x。
①若,BM=,求x的值;
②记四边形ADPE与△ABC重叠部分的面积为S,求S与x之间的函数关系式以及S的最小值;
③连接DE,分别与边AB、AC交于点G、H(如图2),当x取何值时,∠BAD=150?并判断此时以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在RtΔABC中,∠BAC=90°,DB⊥BC,DA=DB,点E是BC的中点,DE与AB相交于点G.
(1)求证DE⊥AB;
(2)如果∠FCB=∠FBC=∠DAB,设DF与BC交于点H,求证:DH=FH.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是(    )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是(  )
 
A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则AB的长为           

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个直角三角形的两边长分别为9和40,则第三边长的平方是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB=AC,DE垂直平分AB分别交AB、AC于D、E两点,若∠A=40º,则∠EBC=     º.

查看答案和解析>>

同步练习册答案