精英家教网 > 初中数学 > 题目详情
如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.
(1)直线FC与⊙O有何位置关系?并说明理由;
(2)若OB=BG=2,求CD的长.

【答案】分析:(1)相切.连接OC,证OC⊥FG即可.根据题意AF⊥FG,证∠FAC=∠ACO可得OC∥AF,从而OC⊥FG,得证;
(2)根据垂径定理可求CE后求解.在Rt△OCG中,根据三角函数可得∠COG=60°.结合OC=2求CE,从而得解.
解答:解:(1)直线FC与⊙O相切.                            
理由如下:连接OC.
∵OA=OC,∴∠1=∠2.                                  
由翻折得,∠1=∠3,∠F=∠AEC=90°.
∴∠2=∠3,∴OC∥AF.
∴∠OCG=∠F=90°.
∴直线FC与⊙O相切.  
                        
(2)在Rt△OCG中,
∴∠COG=60°.                                        
在Rt△OCE中,.       
∵直径AB垂直于弦CD,

点评:此题考查了切线的判定、垂径定理、解直角三角形等知识点,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,则BC=
 
cm,∠ABD=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,直径CD的长度为10cm,AB是弦,且AB⊥CD于M,OM=3cm,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线F精英家教网C与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若OB=BG,求证:四边形OCBD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳区二模)如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD的度数为(  )

查看答案和解析>>

同步练习册答案