【题目】已知四边形ABCD是正方形,△ADE是等边三角形,求∠BEC的度数.
【答案】 30°或者150°.
【解析】试题分析:分当等边△ADE在正方形ABCD外部时(如图①)和当等边△ADE在正方形ABCD内部时(如图②)两种情况求解.
试题解析:
(1)当等边三角形ADE在正方形ABCD外部时,如图①所示.
∵AB=AD=AE,∠BAE=90°+60°=150°,
∴∠AEB=(180°-150°)÷2=15°.
同理,∠DEC=15°.∴∠BEC=60°-15°-15°=30°.
(2)当等边三角形ADE在正方形ABCD内部时,如图②所示.
∵AB=AD=AE,∠BAE=90°-60°=30°,
∴∠AEB=(180°-30°)÷2=75°.
同理,∠DEC=75°.∴∠BEC=360°-75°×2-60°=150°.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.
(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;
(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;
(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答: (填“成立”或“不成立”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】修建某一建筑时,若请甲、乙两个工程队同时施工,8天可以完成,需付两队费用共3520元;若先请甲队单独做6天,再请乙队单独做12天可以完成,需付两队费用共3480元,问:
(1)甲、乙两队每天费用各为多少?
(2)若单独请某队完成工程,则单独请哪队施工费用较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角
A. 都扩大为原来的5倍 B. 都扩大为原来的10倍
C. 都扩大为原来的25倍 D. 都与原来相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O.
(1)如图①,连接AF,CE,试说明四边形AFCE为菱形,并求AF的长;
(2)如图②,动点P,Q分别从A,C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,当以A,C,P,Q四点为顶点的四边形是平行四边形时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com