精英家教网 > 初中数学 > 题目详情
2.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E,CD=4$\sqrt{2}$,AE=2,则⊙O的半径为3.

分析 由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA-AE,表示出OE,利用勾股定理列出关于r的方程,求出方程的解即可得到圆的半径r的值.

解答 解:∵AB是⊙O的直径,且CD⊥AB于点E,
∴CE=$\frac{1}{2}$CD=$\frac{1}{2}$×4$\sqrt{2}$=2$\sqrt{2}$,
在Rt△OCE中,OC2=CE2+OE2
设⊙O的半径为r,则OC=r,OE=OA-AE=r-2,
∴r2=(2$\sqrt{2}$)2+(r-2)2
解得:r=3,
∴⊙O的半径为3.
故答案为:3.

点评 此题考查了垂径定理,勾股定理,关键是掌握 垂直弦的直径平分这条弦,并且平分弦所对的两条弧.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.已知$\frac{x}{y}$=$\frac{3}{5}$,则$\frac{y+x}{y-x}$=   4   .

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.将长方形纸片ABCD按图中方式折叠,其中EF、EC为折痕,折叠后A′、B′、E在一直线上,已知∠BEC=56度,那么∠A′EC=124度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知抛物线y=a(x-m)2+n的顶点为A,与y轴的交点为B,若直线AB的解析式为y=-2x+b,点A,B关于原点的对称点分别为A′,B′,且四边形ABA′B′为矩形,则下列关于m,n,b的关系式正确的是(  )
A.5m=4bB.4m=5bC.5n=3bD.3n=5b

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.有一个圆心角为120°,半径为3cm的扇形,若将此扇形卷成一个圆锥,则此圆锥的侧面积是3π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,梯形ABCD中,AD∥BC,∠C=90°,∠B=60°,AB=4,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则这个扇形的面积是4π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若x2=3,则x=±$\sqrt{3}$;若$\sqrt{x}$=3,则x=9;若 $\sqrt{x}$+(y-1)2=0,则x-y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列运算中,错误的是(  )
A.$\frac{1}{4}×({-4})=4×({-4})$B.$-5×({-\frac{1}{2}})=-\frac{1}{2}×({-5})$C.7-(-3)=7+3D.6-7=(+6)+(-7)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.小明是个爱动脑筋的孩子,他在学完与圆有关的角圆周角、圆心角后,意犹未尽,又查阅到了与圆有关的另一种角------弦切角.请同学们先仔细阅读下面的材料,再完成后面的问题.
材料:顶点在圆上,一边与圆相交,另一边与圆相切的角叫做弦切角.如图1,弧$\widehat{AmB}$是弦切角∠PAB所夹的弧,他发现弦切角与它所夹的弧所对的圆周角有关系.

问题1:如图2,直线DB切⊙O于点A,∠PCA是圆周角,当圆心O位于边AC上时,
求证:∠PAD=∠PCA,请你写出这个证明过程.
问题拓展:
如果圆心O不在∠PCA的边上,∠PAD=∠PCA还成立吗?如图3,当圆心O在∠PCA的内部时,小明证明了这个结论是成立的.他的思路是:作直线AE,联结PE,由问题1的结论可知∠PAD=∠PEA,而∠PCA=∠PEA,从而证明∠PAD=∠PC.
问题2:如图4,当圆心O在∠PCA的外部时,∠PAD=∠PCA仍然成立.请你仿照小明的思路证明这个结论.
运用:如图5,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.(提示:可以直接使用本题中的结论)

查看答案和解析>>

同步练习册答案