【题目】如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)如果AD=5,AE=4,求AC长.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)连接OD,由AD为角平分线,得到一对角相等,再由OA=OD,得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行可得AE与OD平行,由两直线平行同旁内角互补,得到∠E与∠EDO互补,再由∠E为直角,可得∠EDO为直角,即DE为圆O的切线,得证;
(2)连接BD,过点A作AF⊥AC,由AB为圆O的直径,根据直径所对的圆周角为直角,得到∠ADB为直角,在直角三角形ABD中,利用锐角三角函数定义得到cos∠DAB的值,又在直角三角形AED中,由AE及AD的长,利用锐角三角函数定义求出cos∠EAD的值,由∠EAD=∠DAB,得到cos∠EAD=cos∠DAB,得出cos∠DAB的值,即可求出直径AB的长,由勾股定理和垂径定理即可求出AC长.
试题解析:(1)连接OD,如图1所示:
∵AD为∠CAB的平分线,
∴∠CAD=∠BAD,
又∵OA=OD,
∴∠BAD=ODA,
∴∠CAD=∠ODA,
∴AC∥OD,
∴∠E+∠EDO=180°,
又∵AE⊥ED,即∠E=90°,
∴∠EDO=90°,
则ED为圆O的切线;
(2)连接BD,如图2所示,过点A作AF⊥AC,
∵AB为圆O的直径,
∴∠ADB=90°,
在Rt△ABD中,cos∠DAB=,
在Rt△AED中,AE=4,AD=5,
∴cos∠EAD=,又∠EAD=∠DAB,
∴cos∠DAB=cos∠EAD=,
则AB=AD=,即圆的直径为,
∴AO=,
∵∠E=∠EDO=∠EFO=90°,
∴四边形EFOD是矩形,
∴OF=DE=3,
∴AF=,
∴AC=2AF=.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(a,0)、C(0,b)满足,
(1) 直接写出:a=_________,b=_________;
(2) 点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;
(3) 在(2)的条件下,点M为直线BE上一动点,连OM,将线段OM绕点M逆时针旋转90°,如图2,点O的对应点为N,当点M运动时,判断点N的运动路线是什么图形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,
(1)求证:四边形ABCD为矩形;
(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一块矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好围成一个容积为15m3的无盖长方体水箱,且此长方体水箱的底面长比宽多2米.求该矩形铁皮的长和宽各是多少米?若设该矩形铁皮的宽是x米,则根据题意可得方程为( )
A. (x+2)(x﹣2)×1=15 B. x(x﹣2)×1=15 C. x(x+2)×1=15 D. (x+4)(x﹣2)×1=15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明认为下列括号内都可以填a4 , 你认为使等式成立的只能是( )
A.a12=( )3
B.a12=( )4
C.a12=( )2
D.a12=( )6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为( )
A. (﹣2,0)B. (﹣2,﹣1)C. (﹣1,﹣1)D. (﹣1,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com