精英家教网 > 初中数学 > 题目详情

【题目】如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2 ;③当AD=2时,EF与半圆相切;④若点F恰好落在 上,则AD=2 ;⑤当点D从点A运动到点B时,线段EF扫过的面积是16 .其中正确结论的序号是

【答案】①、③、⑤
【解析】解:①连接CD,如图1所示.
∵点E与点D关于AC对称,
∴CE=CD.
∴∠E=∠CDE.
∵DF⊥DE,
∴∠EDF=90°.
∴∠E+∠F=90°,∠CDE+∠CDF=90°.
∴∠F=∠CDF.
∴CD=CF.
∴CE=CD=CF.
∴结论“CE=CF”正确.
②当CD⊥AB时,如图2所示.

∵AB是半圆的直径,
∴∠ACB=90°.
∵AB=8,∠CBA=30°,
∴∠CAB=60°,AC=4,BC=4
∵CD⊥AB,∠CBA=30°,
∴CD= BC=2
根据“点到直线之间,垂线段最短”可得:
点D在线段AB上运动时,CD的最小值为2
∵CE=CD=CF,
∴EF=2CD.
∴线段EF的最小值为4
∴结论“线段EF的最小值为2 ”错误.
③当AD=2时,连接OC,如图3所示.

∵OA=OC,∠CAB=60°,
∴△OAC是等边三角形.
∴CA=CO,∠ACO=60°.
∵AO=4,AD=2,
∴DO=2.
∴AD=DO.
∴∠ACD=∠OCD=30°.
∵点E与点D关于AC对称,
∴∠ECA=∠DCA.
∴∠ECA=30°.
∴∠ECO=90°.
∴OC⊥EF.
∵EF经过半径OC的外端,且OC⊥EF,
∴EF与半圆相切.
∴结论“EF与半圆相切”正确.
④当点F恰好落在 上时,连接FB、AF,如图4所示.

∵点E与点D关于AC对称,
∴ED⊥AC.
∴∠AGD=90°.
∴∠AGD=∠ACB.
∴ED∥BC.
∴△FHC∽△FDE.

∵FC= EF,
∴FH= FD.
∴FH=DH.
∵DE∥BC,
∴∠FHC=∠FDE=90°.
∴BF=BD.
∴∠FBH=∠DBH=30°.
∴∠FBD=60°.
∵AB是半圆的直径,
∴∠AFB=90°.
∴∠FAB=30°.
∴FB= AB=4.
∴DB=4.
∴AD=AB﹣DB=4.
∴结论“AD=2 ”错误.
⑤∵点D与点E关于AC对称,

点D与点F关于BC对称,
∴当点D从点A运动到点B时,
点E的运动路径AM与AB关于AC对称,
点F的运动路径NB与AB关于BC对称.
∴EF扫过的图形就是图5中阴影部分.
∴S阴影=2SABC
=2× ACBC
=ACBC
=4×4
=16
∴EF扫过的面积为16
∴结论“EF扫过的面积为16 ”正确.
所以答案是:①、③、⑤.
【考点精析】本题主要考查了垂线段最短和平行线的判定与性质的相关知识点,需要掌握连接直线外一点与直线上各点的所有线段中,垂线段最短;现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用;由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若SAEB=5,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角板是学习数学的重要工具,将一副三角板中的两块直角三角板的直角顶点按如图方式叠放在一起,当且点在直线的上方时,解决下列问题:(友情提示:

1)①若,则的度数为  

②若,则的度数为  

2)由(1)猜想的数量关系,并说明理由.

3)这两块三角板是否存在一组边互相平行?若存在,请直接写出的角度所有可能的值(不必说明理由);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.

(1)求证:△ACD是等边三角形.
(2)连接OE,若DE=2,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣ (x<0)与y= (x>0)的图象上,则ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算:(﹣1)3﹣( 2× +6×|﹣ |
(2)化简并求值:( )÷ ,其中a=1,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3 , 则下列结论不一定成立的是(
A.S1>S2+S3
B.△AOM∽△DMN
C.∠MBN=45°
D.MN=AM+CN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(2,2)关于直线y=k(k>0)的对称点恰好落在x轴的正半轴上,则k的值是_____

查看答案和解析>>

同步练习册答案