精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分∠FAC.
(1)求证:CF是⊙O的切线;
(2)∠F=30°时,求
S△OFE
S四边形AOEC
的值.
(1)证明:连接OE,
∵AE平分∠FAC,
∴∠CAE=∠OAE,
又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA,
∴OEAC,
∴∠OEF=∠ACF,
又∵AC⊥EF,
∴∠OEF=∠ACF=90°,
∴OE⊥CF,
又∵点E在⊙O上,
∴CF是⊙O的切线;

(2)∵∠OEF=90°,∠F=30°,
∴OF=2OE
又OA=OE,
∴AF=3OE,
又∵OEAC,
∴△OFE△AFC,
OE
AC
=
OF
AF
=
2
3

S△OFE
S△AFC
=
4
9

S△OFE
S四边形AOEC
=
4
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC为直径的圆交AB于D,则AD的长为(  )
A.
9
5
B.
12
5
C.
16
5
D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC是等腰三角形,∠C=90°,AC=BC=
2
,在BC上取一点O,以O为圆心,OC为半径作半圆与AB相切于点E,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O和⊙O′相交于A、B两点,过点A作⊙O′的切线交⊙O于点C,过点B作两圆的割线分别交⊙O、⊙O′于E、F,EF与AC相交于点P.
(1)求证:PA•PE=PC•PF;
(2)求证:
PE2
PC2
=
PF
PB

(3)当⊙O与⊙O′为等圆时,且PC:CE:EP=3:4:5时,求△PEC与△FAP的面积的比值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,两同心圆O,大圆的弦AB切小圆于点C,且AB=4,求圆环的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线y=
3
3
x+
3
与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.5cm为半径的圆与AB的位置关系是(  )
A.相离B.相交C.相切D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若过点D作DGBE交EF于点G,过G作GHDE交DF于点H,则易知△DGH是等边三角形.设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3,试探究S1、S2、S3之间的等量关系,请直接写出其结论.

查看答案和解析>>

同步练习册答案