精英家教网 > 初中数学 > 题目详情
12.我市对某中学八年级学生进行数学水平质量监测,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀.并绘制成以下两幅统计图(不完整)

请你根据图中所给的信息解答下列问题:
(1)这次测试结果共抽查了120名学生;
(2)请将以上两幅统计图补充完整;
(3)该校有500名八年级学生,若“一般”和“优秀”均被视为达标成绩,请你估计该年级有400人达标.

分析 (1)根据不合格的人数和所占的百分比即可求出这次共抽测的人数;
(2)用总人数乘以优秀所占的百分比求出优秀的人数,用一般的人数除以抽查的总人数求出一般所占的百分比,从而补全统计图;
(3)用该校的总人数乘以“一般”和“优秀”所占的百分比,即可求出达标的人数.

解答 解:(1)这次测试结果共抽查的学生数是:24÷20%=120(名);
故答案为:120;

(2)优秀的人数是:120×50%=60(名),
一般所占的百分比是:$\frac{36}{120}$×100%=30%,
补图如下:


(3)根据题意得:
500×(30%+50%)=400(人),
答:估计该年级有400人达标.
故答案为:400.

点评 本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.解分式方程:$\frac{2x}{2x-5}$-$\frac{1}{2x+5}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,∠A=30°,cosB=$\frac{4}{5}$,AC=6$\sqrt{3}$.求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解方程:$\frac{1}{4}$x+$\frac{1}{6}$(x+2)=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列各数中:+(-5)、|-1-2|、-$\frac{π}{2}$、-(-7)、0、(-2015)3,负数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,点O是直线AB、CD的交点,OE⊥AB,OF⊥CD,OM是∠BOF的平分线.
(1)填空:
①由OM是∠BOF的平分线,可得∠FOM=∠BOM;
②若∠AOC=34°,则∠BOD=34度;
③根据同角的余角相等,可得∠EOF=∠AOC;
(2)若∠AOC=α,求∠COM.(用含α的代数式表示,并写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:A=a2+5ab+b2,B=a2+10ab-2b2
(1)求2A-B等于多少?
(2)若|a+1|+(b-2)2=0,求2A-B的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.探究证明:
(1)如图1,矩形ABCD中,点M、N分别在边BC,CD上,AM⊥BN,求证:$\frac{BN}{AM}$=$\frac{BC}{AB}$.
(2)如图2,矩形ABCD中,点M在边BC上,EF⊥AM,EF分别交AB,CD于点E、点F,试猜想$\frac{EF}{AM}$与$\frac{BC}{AB}$有什么数量关系?并证明你的猜想.
拓展应用:综合(1)、(2)的结论解决以下问题:
(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求$\frac{DN}{AM}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.求抛物线y=-x2向下平移1个单位长度的解析式,并求该抛物线的对称轴,顶点坐标以及函数的最值.

查看答案和解析>>

同步练习册答案